Publications by authors named "Abigail Avelar"

Ischemic heart disease is a leading cause of heart failure and hypoxia inducible factor 1 (HIF1) is a key transcription factor in the response to hypoxic injury. Our lab has developed a mouse model in which a mutated, oxygen-stable form of HIF1α (HIF-PPN) can be inducibly expressed in cardiomyocytes. We observed rapid cardiac dilation and loss of contractility in these mice due to lower expression of excitation-contraction coupling genes and reduced calcium flux.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are powerful regulators of protein expression. Many play important roles in cardiac development and disease. While several miRNAs and targets have been well characterized, the abundance of miRNAs and the numerous potential targets for each suggest that the vast majority of these interactions have yet to be described.

View Article and Find Full Text PDF

The principal regulator of cellular response to low oxygen is hypoxia-inducible factor (HIF)-1, which is stabilized in several forms of heart failure. Our laboratory developed a mouse strain in which a stable form of HIF-1 can be inducibly expressed in cardiomyocytes. Strikingly, these mice show a rapid decrease in cardiac contractility and a rapid loss of SERCA2 protein, which is also seen in heart failure.

View Article and Find Full Text PDF

Alternative splicing of RNA is an underexplored area of transcriptional response. We expect that early changes in alternatively spliced genes may be important for responses to cardiac injury. Hypoxia inducible factor 1 (HIF1) is a key transcription factor that rapidly responds to loss of oxygen through alteration of metabolism and angiogenesis.

View Article and Find Full Text PDF

Vibrio cholerae is an autochthonous member of diverse aquatic ecosystems around the globe. Collectively, the genomes of environmental V. cholerae strains comprise a large repository of encoded functions which can be acquired by individual V.

View Article and Find Full Text PDF

Studies of gene expression abnormalities in psychiatric or neurological disorders often involve the use of postmortem brain tissue. Compared with single-cell organisms or clonal cell lines, the biological environment and medical history of human subjects cannot be controlled, and are often difficult to document fully. The chance of finding significant and replicable changes depends on the nature and magnitude of the observed variations among the studied subjects.

View Article and Find Full Text PDF