Unlabelled: The bacterium is an opportunistic pathogen that can cause lung, skin, wound, joint, urinary tract, and eye infections. While is known to exhibit a robust competitive response toward other bacterial species, this bacterium is frequently identified in polymicrobial infections where multiple species survive. For example, in prosthetic joint infections, can be identified along with other pathogenic bacteria including , , and .
View Article and Find Full Text PDFThe bacterium is an opportunistic pathogen that can cause lung, skin, wound, joint, urinary tract, and eye infections. While is known to exhibit a robust competitive response towards other bacterial species, this bacterium is frequently identified in polymicrobial infections where multiple species survive. For example, in prosthetic joint infections (PJIs), can be identified along with other pathogenic bacteria including and Here we have explored the survival and behavior of such microbes and find that readily survives culturing with while other tested species do not.
View Article and Find Full Text PDFBacterial communities exhibit complex self-organization that contributes to their survival. To better understand the molecules that contribute to transforming a small number of cells into a heterogeneous surface biofilm community, we studied acellular aggregates, structures seen by light microscopy in colony biofilms using light microscopy and chemical imaging. These structures differ from cellular aggregates, cohesive clusters of cells important for biofilm formation, in that they are visually distinct from cells using light microscopy and are reliant on metabolites for assembly.
View Article and Find Full Text PDFRhamnolipids are surfactants produced by many Pseudomonad bacteria, including the species . These rhamnolipids are known to aid and enable numerous phenotypic traits that improve the survival of the bacteria that make them. These surfactants are also important for industrial products ranging from pharmaceuticals to cleaning supplies to cosmetics, to name a few.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic human pathogen implicated in both acute and chronic diseases, which resists antibiotic treatment, in part by forming physical and chemical barriers such as biofilms. Here, we explore the use of confocal Raman imaging to characterize the three-dimensional (3D) spatial distribution of alkyl quinolones (AQs) in P. aeruginosa biofilms by reconstructing depth profiles from hyperspectral Raman data.
View Article and Find Full Text PDFThere are many hydrated surface niches that are neither static nor continuously flowing that are colonized by microbes such as bacteria. Such periodic hydrodynamic regimes are distinct from aquatic systems where microbial dissemination is reasonably predicted by assuming continuous flow or static systems where motile microbes largely control their own fate. Here we show how non-motile bacteria exhibit rapid, dispersive bursts of movement over surfaces using transient confluent hydration from the environment, which we term "surface hydrodispersion" where cells traverse thousands of cell lengths within minutes.
View Article and Find Full Text PDFA two to three period analytical chemistry experiment has been developed which allows second year students to explore chemical color tests used to detect adulterated pharmaceuticals. Students prepare several paper analytical devices (PADs) to generate positive and negative controls antibiotics, along with cutting agents such as starch and chalk. These PADs are used to identify the active ingredients and excipients in mystery tablets prepared by their classmates.
View Article and Find Full Text PDFProsthetic joint infections (PJIs) are challenging to treat therapeutically because the infectious agents often are resistant to antibiotics and capable of abundant growth in surface-attached biofilms. Though infection rates are low, ca. 1-2 %, the overall increase in the sheer number of joint replacement surgeries results in an increase in patients at risk.
View Article and Find Full Text PDFThe degree to which surface motile bacteria explore their surroundings is influenced by aspects of their local environment. Accordingly, regulation of surface motility is controlled by numerous chemical, physical, and biological stimuli. Discernment of such regulation due to these multiple cues is a formidable challenge.
View Article and Find Full Text PDFCarrying out chemical analysis of antimalarials to detect low-quality medications before they reach a patient is a costly venture. Here, we show that a library of chemical color tests embedded on a paper card can presumptively identify formulations corresponding to very low quality antimalarial drugs. The presence or absence of chloroquine (CQ), doxycycline (DOX), quinine, sulfadoxine, pyrimethamine, and primaquine antimalarial medications, in addition to fillers used in low-quality pharmaceuticals, are indicated by patterns of colors that are generated on the test cards.
View Article and Find Full Text PDFPaper-based devices serve to address many analytical questions both inside and outside of the laboratory setting. For the first time, yeast is used to construct a whole-cell, paper-based biosensor device. This biologically based paper analytical device (BioPAD) is sensitive to antibiotics in the tetracycline family, and it could potentially address questions of pharmaceutical quality as well as antibiotic contamination in liquids.
View Article and Find Full Text PDFReports of low-quality pharmaceuticals have been on the rise in the past decade, with the greatest prevalence of substandard medicines in developing countries, where lapses in manufacturing quality control or breaches in the supply chain allow substandard medicines to reach the marketplace. Here, we describe inexpensive test cards for fast field screening of pharmaceutical dosage forms containing beta lactam antibiotics or combinations of the four first-line antituberculosis (TB) drugs. The devices detect the active pharmaceutical ingredients (APIs) ampicillin, amoxicillin, rifampicin, isoniazid, ethambutol, and pyrazinamide and also screen for substitute pharmaceuticals, such as acetaminophen and chloroquine that may be found in counterfeit pharmaceuticals.
View Article and Find Full Text PDF