Publications by authors named "Abigail A Fraeman"

Gale crater, the field site for NASA's Mars Science Laboratory Curiosity rover, contains a diverse and extensive record of aeolian deposition and erosion. This study focuses on a series of regularly spaced, curvilinear, and sometimes branching bedrock ridges that occur within the Glen Torridon region on the lower northwest flank of Aeolis Mons, the central mound within Gale crater. During Curiosity's exploration of Glen Torridon between sols ∼2300-3080, the rover drove through this field of ridges, providing the opportunity for in situ observation of these features.

View Article and Find Full Text PDF
Article Synopsis
  • The Mars Science Laboratory (MSL) mission has analyzed color variations in lacustrine sedimentary rocks on Vera Rubin Ridge, revealing changes from red to purple to gray due to diagenetic alteration.
  • The research utilizes visible and near-infrared spectra from Mastcam and ChemCam to link these color variations to different mineralogical properties of hematite, suggesting a process of grain-size coarsening influenced by fluid interactions.
  • Understanding these diagenetic processes is vital for assessing past habitability on Mars, as they may have altered sediments and potentially diminished the preservation of biosignatures in ancient Martian environments.
View Article and Find Full Text PDF

Hematite (FeO) is a common oxidization product on Earth, Mars, and some asteroids. Although oxidizing processes have been speculated to operate on the lunar surface and form ferric iron-bearing minerals, unambiguous detections of ferric minerals forming under highly reducing conditions on the Moon have remained elusive. Our analyses of the Moon Mineralogy Mapper data show that hematite, a ferric mineral, is present at high latitudes on the Moon, mostly associated with east- and equator-facing sides of topographic highs, and is more prevalent on the nearside than the farside.

View Article and Find Full Text PDF

Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars.

View Article and Find Full Text PDF