Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis.
View Article and Find Full Text PDFCatalytic cleavage of strong bonds including hydrogen-hydrogen, carbon-oxygen, and carbon-hydrogen bonds is a highly desired yet challenging fundamental transformation for the production of chemicals and fuels. Transition metal-containing catalysts are employed, although accompanied with poor selectivity in hydrotreatment. Here we report metal-free nitrogen-assembly carbons (NACs) with closely-placed graphitic nitrogen as active sites, achieving dihydrogen dissociation and subsequent transformation of oxygenates.
View Article and Find Full Text PDFThe rhodium dicarbonyl {PhB(Ox)Im}Rh(CO) (1) and primary silanes react by oxidative addition of a nonpolar Si-H bond and, uniquely, a thermal dissociation of CO. These reactions are reversible, and kinetic measurements model the approach to equilibrium. Thus, 1 and RSiH react by oxidative addition at room temperature in the dark, even in CO-saturated solutions.
View Article and Find Full Text PDFMany transition metals commonly encountered in inorganic materials and organometallic compounds possess NMR-active nuclei with very low gyromagnetic ratios (γ) such as Y, Rh, Ag, and W. A low-γ leads to poor NMR sensitivity and other experimental challenges. Consequently, nuclei with low-γ are often impossible to study with conventional solid-state NMR methods.
View Article and Find Full Text PDFAn electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ(3)-N,Si,C-PhB(Ox(Me2))(Ox(Me2)SiHPh)Im(Mes)}Rh(H)CO][HB(C6F5)3] (, Ox(Me2) = 4,4-dimethyl-2-oxazoline; Im(Mes) = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox(Me2))2Im(Mes)}RhH(SiH2Ph)CO () and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox(Me2))2Im(Mes)}RhH(SiHPh)CO][HB(C6F5)3] generated by H abstraction. Complex catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products.
View Article and Find Full Text PDF