In the transition to a clean-energy future, CO separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO adsorption, large CO removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg(dobpdc) (dobpdc = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO adsorption isotherms resulting from cooperative and reversible insertion of CO into metal-amine bonds to form ammonium carbamate chains.
View Article and Find Full Text PDFOne of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO(2) from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research.
View Article and Find Full Text PDFEnviron Sci Technol
October 2011
The Electric Power Research Institute (EPRI) undertook a multiyear effort to understand the landscape of postcombustion CO₂ capture technologies globally. In this paper we discuss several central issues facing CO₂ capture involving scale, energy, and overall status of development. We argue that the scale of CO₂ emissions is sufficiently large to place inherent limits on the types of capture processes that could be deployed broadly.
View Article and Find Full Text PDF