Background Global longitudinal shortening (GL-Shortening) and the mitral annular plane systolic excursion (MAPSE) are known markers in heart failure patients, but measurement may be subjective and less frequently reported because of the lack of automated analysis. Therefore, a validated, automated artificial intelligence (AI) solution can be of strong clinical interest. Methods and Results The model was implemented on cardiac magnetic resonance scanners with automated in-line processing.
View Article and Find Full Text PDFAcute myocardial damage is common in severe COVID-19. Post-mortem studies have implicated microvascular thrombosis, with cardiovascular magnetic resonance (CMR) demonstrating a high prevalence of myocardial infarction and myocarditis-like scar. The microcirculatory sequelae are incompletely characterized.
View Article and Find Full Text PDFBackground: Troponin elevation is common in hospitalized COVID-19 patients, but underlying aetiologies are ill-defined. We used multi-parametric cardiovascular magnetic resonance (CMR) to assess myocardial injury in recovered COVID-19 patients.
Methods And Results: One hundred and forty-eight patients (64 ± 12 years, 70% male) with severe COVID-19 infection [all requiring hospital admission, 48 (32%) requiring ventilatory support] and troponin elevation discharged from six hospitals underwent convalescent CMR (including adenosine stress perfusion if indicated) at median 68 days.
Strain assessment allows accurate evaluation of myocardial function and mechanics in ST-segment elevation myocardial infarction (STEMI). Strain using cardiovascular magnetic resonance (CMR) has traditionally been assessed with tagging but limitations of this technique have led to more widespread use of alternative methods, which may be more robust. We compared the inter-study repeatability of circumferential global peak-systolic strain (Ecc) and peak-early diastolic strain rate (PEDSR) derived by tagging with values obtained using novel cine-based software: Feature Tracking (FT) (TomTec, Germany) and Tissue Tracking (TT) (Circle cvi, Canada) in patients following STEMI.
View Article and Find Full Text PDFFollowing publication of the original article [1], the author reported his name has erroneously spelled as Abishek Shetye. The correct name is Abhishek Shetye.
View Article and Find Full Text PDFBackground: In patients with heart failure, downregulation of adenosine receptor gene expression and impaired adenosine-related signal transduction may result in a diminished response to adenosine. This may have implications for cardiac stress testing. We evaluated the haemodynamic response to intravenous adenosine in patients with left ventricular systolic dysfunction (LVSD) undergoing stress cardiovascular magnetic resonance imaging (CMR).
View Article and Find Full Text PDFBackground: To determine if global strain parameters measured by cardiovascular magnetic resonance (CMR) acutely following ST-segment Elevation Myocardial Infarction (STEMI) predict adverse left ventricular (LV) remodelling independent of infarct size (IS).
Methods: Sixty-five patients with acute STEMI (mean age 60 ± 11 years) underwent CMR at 1-3 days post-reperfusion (baseline) and at 4 months. Global peak systolic circumferential strain (GCS), measured by tagging and Feature Tracking (FT), and global peak systolic longitudinal strain (GLS), measured by FT, were calculated at baseline, along with IS.
Background: Late gadolinium-enhanced cardiovascular magnetic resonance imaging overestimates infarct size and underestimates recovery of dysfunctional segments acutely post ST-segment-elevation myocardial infarction. We assessed whether cardiovascular magnetic resonance imaging-derived segmental myocardial strain and markers of myocardial injury could improve the accuracy of late gadolinium-enhancement in predicting functional recovery after ST-segment-elevation myocardial infarction.
Methods And Results: A total of 164 ST-segment-elevation myocardial infarction patients underwent acute (median 3 days) and follow-up (median 9.
Aim: To conduct a systematic review relating myocardial strain assessed by different imaging modalities for prognostication following ST-elevation myocardial infarction (STEMI).
Methods: An online literature search was performed in PubMed and OVID(®) electronic databases to identify any studies that assessed global myocardial strain parameters using speckle-tracking echocardiography (STE) and/or cardiac magnetic resonance imaging (CMR) techniques [either myocardial tagging or feature tracking (FT) software] in an acute STEMI cohort (days 0-14 post-event) to predict prognosis [either development of major adverse cardiac events (MACE)] or adverse left ventricular (LV) remodelling at follow-up (≥ 6 mo for MACE, ≥ 3 mo for remodelling). Search was restricted to studies within the last 20 years.