Publications by authors named "Abhishek R Panigrahi"

Article Synopsis
  • * Research shows a link between cardiovascular issues and neurodegenerative diseases such as Alzheimer's and Parkinson's, suggesting that complications from thrombosis are frequently observed in these conditions.
  • * The review explores how factors like endothelial dysfunction and platelet hyperactivation contribute to thrombosis, affecting the severity and development of neurodegenerative diseases, along with a discussion on antithrombotic medications used in treating these disorders.
View Article and Find Full Text PDF

Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a predominant neuromotor disorder characterized by the selective death of dopaminergic neurons in the midbrain. The majority of PD cases are sporadic or idiopathic, with environmental toxins and pollutants potentially contributing to its development or exacerbation. However, clinical PD patients are often associated with a reduced stroke frequency, where circulating blood platelets are indispensable.

View Article and Find Full Text PDF

Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses.

View Article and Find Full Text PDF

In the past three decades, interest in using carbon-based nanomaterials (CBNs) in biomedical application has witnessed remarkable growth. Despite the rapid advancement, the translation of laboratory experimentation to clinical applications of nanomaterials is one of the major challenges. This might be attributed to poor understanding of bio-nano interface.

View Article and Find Full Text PDF
Article Synopsis
  • * Nanobiotechnology is emerging as a promising solution that utilizes nanomaterials, particularly two-dimensional nanomaterials (2D-NMs), for improved diagnosis and treatment of NDDs due to their beneficial properties like precise drug delivery and low toxicity.
  • * This review emphasizes the importance of 2D-NMs in providing innovative applications for NDDs, including biosensing, targeted drug delivery, and tissue engineering, while highlighting the lack of comprehensive studies focused specifically on these materials in the context of neurodegenerative disorders.
View Article and Find Full Text PDF

Context: The potential of graphene derivatives for theranostic applications depends on their compatibility with cellular and biomolecular components. Lysophosphatidylcholine (LPC), a lipid component present in oxidized low-density lipoproteins, microvesicles and free circulation in blood, plays a critical role in the pathophysiology of various diseases. Using density functional theory-based methods, we systematically investigated the interaction of atherogenic LPC molecule with different derivatives of graphene, including pristine graphene, graphene with defect, N-doped graphene, amine-functionalized graphene, various graphene oxides and hydroxylated graphene oxides.

View Article and Find Full Text PDF

Platelet-derived microvesicles (PMVs) represent a significant proportion of microvesicles in circulation and have been linked to various pathophysiological complications. Recent research suggests that PMVs carry significant amounts of cargo that can affect cellular functions by influencing calcium oscillations in target cells. As calcium is involved in multiple cellular processes, including hemostasis and thrombosis, this study aimed to investigate the impact of PMVs on platelet calcium mobilization.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is a progressive neuronal illness often linked to increased cardiovascular complications, such as myocardial infarction, cardiomyopathy, congestive heart failure, and coronary heart disease. Platelets, which are the essential components of circulating blood, are considered potential players in regulating these complications, as platelet dysfunction is evident in PD. These tiny blood cell fragments are supposed to play a crucial role in these complications, but the underlying molecular processes are still obscure.

View Article and Find Full Text PDF

The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used data from the Nextstrain server to analyze these mutations' prevalence, considering factors like entropic score and their positions in the receptor binding domain (RBD) of the spike protein.
  • * The findings indicate that understanding these mutations could be crucial for developing future vaccines and therapies against COVID-19 by assessing their effects on vaccine efficacy and viral behavior.
View Article and Find Full Text PDF

Platelet-derived microvesicles (PMVs) are the most abundant microvesicles in circulation, originating from blood platelets via membrane blebbing. PMVs act as biological cargo carrying key molecules from platelets, including immunomodulatory molecules, growth factors, clotting molecules, and miRNAs that can regulate recipient cellular functions. Formation and release of PMVs play an essential role in the pathophysiology of vascular diseases such as hemostasis, inflammation, and thrombosis.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is considered one of the most common causes of dementia worldwide, accounting for about 80 % of all dementia cases. AD is manifested by the extraneuronal deposition of senile plaques of amyloid beta (Aβ) and intraneuronal accumulation of neurofibrillary tangles of phosphorylated tau. The impaired proteostasis of these filamentous Aβ and tau is significantly regulated by reactive oxygen species (ROS).

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second-most-common neurodegenerative disease characterized by motor and non-motor dysfunctions, which currently affects about 10 million people worldwide. Gradual death and progressive loss of dopaminergic neurons in the pars compacta region of substantia nigra result in striatal dopamine deficiency in PD. Specific mutation with further aggregation of α-synuclein in the intraneuronal inclusion bodies is considered the neuropathological hallmark of this disease.

View Article and Find Full Text PDF

Development of economical and high-performance electrocatalysts for the oxygen evolution reaction (OER) is of tremendous interest for future applications as sustainable energy materials. Here, a unique member of efficient OER electrocatalysts has been developed based upon structurally versatile dumbbell-shaped ternary transition-metal (Cu, Ni, Co) phosphates with a three-dimensional (3D) (Cu(OH)(PO)/Ni(PO)·8HO/Co(PO)·8HO) (CNCP) structure. This structure is prepared using a simple aqueous stepwise addition of metal ion source approach.

View Article and Find Full Text PDF

Wound healing is a complex physiological process in which the damaged or injured tissue is replaced or regenerated by new cells or existing cells respectively in their synthesized and secreted matrices. Several cells modulate the process of wound healing including macrophages, fibroblasts, and keratinocytes. Apart from these cells, platelet has been considered as a major cellular fragment to be involved in wound healing at several stages by secreting its granular contents including growth factors, thus resulting in coagulation, inflammation, and angiogenesis.

View Article and Find Full Text PDF

Introduction: Clot retraction is a pivotal process for haemostasis, where platelets develop a contractile force in fibrin meshwork and lead to the increased rigidity of clot. The pathophysiological alteration in contractile forces generated by the platelet-fibrin meshwork can lead to haemostatic disorders. Regardless of its utter significance, clot retraction remains a limited understood process owing to lack of quantification methodology.

View Article and Find Full Text PDF

After gaining entry through ACE2 aided by TMPRSS2, the SARS-CoV-2 causes serious complications of the cardiovascular system leading to myocarditis and other myocardial injuries apart from causing lung, kidney and brain dysfunctions. Here in this review, we are going to divulge the cellular and immunological mechanisms behind the cardiovascular, thrombotic and platelet impairments that are caused in COVID-19. In addition, we also propose the significance of various anti-platelet and anti-thrombotic phytochemicals in the treatment of COVID-19.

View Article and Find Full Text PDF