Publications by authors named "Abhishek Phatarphekar"

Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation.

View Article and Find Full Text PDF

Protein kinases are key signaling nodes that regulate fundamental biological and disease processes. Illuminating kinase signaling from multiple angles can provide deeper insights into disease mechanisms and improve therapeutic targeting. While fluorescent biosensors are powerful tools for visualizing live-cell kinase activity dynamics in real time, new molecular tools are needed that enable recording of transient signaling activities for post hoc analysis and targeted manipulation.

View Article and Find Full Text PDF

SARS-CoV-2, severe acute respiratory syndrome coronavirus-2, causes coronavirus disease- 2019 (COVID-19). Mostly, COVID-19 causes respiratory symptoms that can resemble those of a cold, the flu, or pneumonia. COVID-19 may harm more than just lungs and respiratory systems.

View Article and Find Full Text PDF

The COVID-19 pandemic has spurred an unprecedented movement to develop safe and effective vaccines against the SARS-CoV-2 virus to immunize the global population. The first set of vaccine candidates that received emergency use authorization targeted the spike (S) glycoprotein of the SARS-CoV-2 virus that enables virus entry into cells via the receptor binding domain (RBD). Recently, multiple variants of SARS-CoV-2 have emerged with mutations in S protein and the ability to evade neutralizing antibodies in vaccinated individuals.

View Article and Find Full Text PDF

The ability of iodotyrosine deiodinase to salvage iodide from iodotyrosine has long been recognized as critical for iodide homeostasis and proper thyroid function in vertebrates. The significance of its additional ability to dehalogenate bromo- and chlorotyrosine is less apparent, and none of these functions could have been anticipated in invertebrates until recently. as most arthropods, contains a deiodinase homolog encoded by , now named (), with a similar catalytic specificity.

View Article and Find Full Text PDF

The flavoprotein iodotyrosine deiodinase (IYD) was first discovered in mammals through its ability to salvage iodide from mono- and diiodotyrosine, the by-products of thyroid hormone synthesis. Genomic information indicates that invertebrates contain homologous enzymes although their iodide requirements are unknown. The catalytic domain of IYD from Drosophila melanogaster has now been cloned, expressed and characterized to determine the scope of its potential catalytic function as a model for organisms that are not associated with thyroid hormone production.

View Article and Find Full Text PDF

Iodide is required for thyroid hormone synthesis in mammals and other vertebrates. The role of both iodide and iodinated tyrosine derivatives is currently unknown in lower organisms, yet the presence of a key enzyme in iodide conservation, iodotyrosine deiodinase (IYD), is suggested by genomic data from a wide range of multicellular organisms as well as some bacteria. A representative set of these genes has now been expressed, and the resulting enzymes all catalyze reductive deiodination of diiodotyrosine with kcat/Km values within a single order of magnitude.

View Article and Find Full Text PDF

Vitamin D therapy is widely used for the treatment of hyperparathyroidism associated with chronic renal failure in renal disease patients. The vitamin D prodrug, 1α-hydroxyvitamin D(2) (1α(OH)D(2)), is used for the treatment of the end stage renal disease patients who as a result of impaired kidney function cannot convert the naturally occurring vitamin D to the active hormonal form namely 1,25-dihydroxyvitamin D(2) (1,25(OH)(2)D(2)). The systemic circulating levels of this active form are in the pg/mL range and represent a significant bioanalytical challenge for therapeutic monitoring.

View Article and Find Full Text PDF