Publications by authors named "Abhishek Mondal"

The transportation of ions across cell membranes is vital in biological functions and is frequently controlled by external triggers like light, ligands, and voltage. Synthetic ion transport systems, particularly those featuring gating mechanisms, have attracted considerable interest. In this research, we engineered self-assembled barrel rosette ion channels using a photoresponsive azobenzene integrated at an allosteric site.

View Article and Find Full Text PDF

Despite the significant interest in designing artificial ion channels, there is limited availability of channel-forming molecules to tackle complex issues, especially in biological systems. Moreover, a major challenge is the scarcity of chloride transporters that can selectively induce toxicity in cancer cells while minimizing harm to normal healthy cells. This work reports a series of 2-hydroxyphenyl benzamide-based small molecules 1 a-1 c, which self-assemble to form barrel rosette-type artificial ion channels that adequately transport chloride ions across membranes.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how zwitterionic amphiphilic copolymers (ZACs) affect the formation of calcium sulfate (CaSO) at the zwitterion-water interface, which is important for reducing mineral scaling in industrial processes like desalination and heat exchange.
  • Researchers used techniques like grazing incidence small angle X-ray Scattering (GISAXS) and quartz crystal microbalance with dissipation (QCM-D) to monitor the growth of CaSO crystals on two types of ZAC coatings: PT:SBMA and PT:MPC.
  • Results indicated that the PT:MPC coating facilitated nucleation but slowed down crystal growth compared to PT:SBMA, with calcium ion adsorption key to the processes and a phase transition
View Article and Find Full Text PDF

A general approach to alkaloids of the family following a key Johnson (orthoester)-Claisen rearrangement of an enantioenriched allylic alcohol has been disclosed. The tricyclic core (1c) of -3-octahydroindoline skeleton was achieved an ester-aminolysis followed by an intramolecular aza-Michael reaction with amine under elevated temperature. Utilizing aforementioned strategy, a collective total syntheses of alkaloids, such as (-)-2-oxo-epimesembranol (1d) [the first total synthesis], (-)-6-epimesembranol (1b), and (-)-mesembrine (1a) were shown.

View Article and Find Full Text PDF

Codeine and morphine are among the few natural products that are used directly as drugs for medical treatment. However, the availability of these is widely dependent on natural resources. Herein, we report an efficient enantioselective seven-step synthesis of (-)-codeine starting from simpler starting materials.

View Article and Find Full Text PDF

Nature has ingeniously developed specialized water transporters that effectively reject ions, including protons, while transporting water across membranes. These natural water channels, known as aquaporins (AQPs), have inspired the creation of Artificial Water Channels (AWCs). However, replicating superfast water transport with synthetic molecular structures that exclude salts and protons is a challenging task.

View Article and Find Full Text PDF

We have accomplished a unified strategy to achieve the structurally intriguing indolosesquiterpene alkaloids with diverse biological activity, xiamycin A (1a), xiamycin A methyl ester (1b) and oridamycins A (2a), and B (2b), which possesses a complex 6/6/6/5/6-fused pentacyclic skeleton bearing a carbazole moiety fused with a highly functionalized -decalin motif. Lewis acid-mediated epoxy-ene cyclization establishes the required pentacyclic scaffold with the installation of the four contiguous stereogenic centers. Further oxidative cleavage of the vinyl functionality, followed by successive functional group interconversions, completed the total synthesis of the indolosesquiterpene alkaloids.

View Article and Find Full Text PDF

Plasma protein therapies are used by millions of people across the globe to treat a litany of diseases and serious medical conditions. One challenge in the manufacture of plasma protein therapies is the removal of salt ions (e.g.

View Article and Find Full Text PDF

The development of potent antibacterial agents has become increasingly difficult as bacteria continue to evolve and develop resistance to antibiotics. It is therefore imperative to find effective antimicrobial agents that can address the evolving challenges posed by infectious diseases and antimicrobial resistance. Using artificial transmembrane ion transporters is an emerging and promising avenue to address this issue.

View Article and Find Full Text PDF

Artificial biomimetic chloride anionophores have shown promising applications as anticancer scaffolds. Importantly, stimuli-responsive chloride transporters that can be selectively activated inside the cancer cells to avoid undesired toxicity to normal, healthy cells are very rare. Particularly, light-responsive systems promise better applicability for photodynamic therapy because of their spatiotemporal controllability, low toxicity, and high tunability.

View Article and Find Full Text PDF

Fluctuations in the intracellular chloride ion concentration, mediated by synthetic ion transporters, have been known to induce cytotoxicity in cells by disrupting ionic homeostasis. However, the activity of these transporters in modulating autophagy remains largely unexplored. Here, we report a benzoylbenzohydrazide () that self-assembles to form a supramolecular nanochannel lumen that allows selective and efficient transport of chloride ions across the cell membranes, disrupts ion homeostasis, and thus leads to the induction of apoptosis in cancer cells.

View Article and Find Full Text PDF

The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis.

View Article and Find Full Text PDF

Artificial channels capable of facilitating the transport of Cl ions across cell membranes while being nontoxic to the cells are rare. Such synthetic ion channels can mimic the functions of membrane transport proteins and, therefore, have the potential to treat channelopathies by replacing defective ion channels. Here we report isophthalic acid-based structurally simple molecules 1 a and 2 a, which self-assemble to render supramolecular nanochannels that allow selective transport of Cl ions.

View Article and Find Full Text PDF

Stimulus-responsive reversible transformation between two structural conformers is an essential process in many biological systems. An example of such a process is the conversion of amyloid-β peptide into β-sheet-rich oligomers, which leads to the accumulation of insoluble amyloid in the brain, in Alzheimer's disease. To reverse this unique structural shift and prevent amyloid accumulation, β-sheet breakers are used.

View Article and Find Full Text PDF

Achieving superfast water transport by using synthetically designed molecular artifacts, which exclude salts and protons, is a challenging task in separation science today, as it requires the concomitant presence of a proper water-binding site and necessary selectivity filter for transporting water. Here, we demonstrate the water channel behavior of two configurationally different peptide diol isomers that mimic the natural water channel system, , aquaporins. The solid-state morphology studies showed the formation of a self-assembled aggregated structure, and X-ray crystal structure analysis confirmed the formation of a nanotubular assembly that comprises two distinct water channels.

View Article and Find Full Text PDF

Quantum mechanical Stern-Gerlach (SG)-like effects are unusual to explore in the domain of optics due to the absence of any interaction of photons or optical waves with the conventional magnetic field. A few recent investigations point toward the possibility of observing an SG-like effect in nonlinear optics via wedge-shaped poling in a long lithium niobate (LN) crystal to generate a spatially varying analogous magnetic field (→). This leads to two different propagation directions for the mutually orthogonal states formed by superposition of signal and idler modes (states) with opposite phases.

View Article and Find Full Text PDF

Freestanding bipolar membranes (BPMs) with an extended-area water splitting junction were fabricated utilizing electrospinning. The junction layer was composed of a mixed fiber mat that was made by concurrently electrospinning sulfonated poly(ether ether ketone) (SPEEK) and quaternized poly(phenylene oxide) (QPPO), with water splitting catalyst nanoparticles intermittently deposited between the fibers. The mat was sandwiched between solution cast SPEEK and QPPO films and hot-pressed to form a dense trilayer BPM with an extended-area junction of finite thickness, composed of QPPO nanofibers embedded in a SPEEK matrix with the catalyst nanoparticles interspaced between the two polymers.

View Article and Find Full Text PDF

Synthetic anion transmembrane transporters are adding new aspirations for treating channelopathies by replacing defective ion channels. The availability of such suitable candidates is still infrequent due to the associated toxicity. Here, we report 3-(1-1,2,3-triazol-1-yl)benzamides as transmembrane anion carriers, nontoxic to cells.

View Article and Find Full Text PDF

The phenomenon of trapping a broad spectrum of light is known as "rainbow trapping" and is achieved by using all-dielectric, hybrid metallo-dielectric, or all-metallic configurations. The latter architectures allow strong confinement but exhibit very high ohmic losses. This results in practical lifetimes of trapped modes to less than 1 ps.

View Article and Find Full Text PDF

Visceral Leishmaniasis (VL), a potentially fatal disease is caused by Leishmania donovani parasites with no vaccine available. Here we produced a dermotropic live attenuated centrin gene deleted Leishmania major (LmCen) vaccine under Good Laboratory Practices and demonstrated that a single intradermal injection confers robust and durable protection against lethal VL transmitted naturally via bites of L. donovani-infected sand flies and prevents mortality.

View Article and Find Full Text PDF

We report two pyridyl-linked benzimidazolyl hydrazones as HCl cotransporters that are 5 and 2 times superior to prodigiosin, a natural product whose transport efficiency has never been routed by synthetic molecules. These hydrazones provide a suitable HCl binding site through a cooperative protonation and chloride ion recognition. HCl transport by the most active compound induces lysosome deacidification.

View Article and Find Full Text PDF

To reconcile the trade-off between separation performance and availability of desired material for cation exchange membranes (CEMs), we designed and successfully prepared a novel sulfonated aromatic backbone-based cation exchange precursor named sodium 4,4'-(((((3,3'-disulfo-[1,1'-biphenyl]-4,4'-diyl)bis(oxy)) bis(4,1-phenylene))bis(azanediyl))bis(methylene))bis(benzene-1,3-disulfonate) [DSBPB] from 4,4'-bis(4-aminophenoxy)-[1,1'-biphenyl]-3,3'-disulfonic acid [BAPBDS] by a three-step procedure that included sulfonation, Michael condensation followed by reduction. Prepared DSBPB was used to blend with sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) to get CEMs for alkali recovery via diffusion dialysis. Physiochemical properties and electrochemical performance of prepared membranes can be tuned by varying the dosage of DSBPB.

View Article and Find Full Text PDF