Publications by authors named "Abhishek Lahiri"

Aqueous-based Al-ion batteries are attractive alternatives to Li-ion batteries due to their safety, high volumetric energy density, abundance, and recyclability. Although aluminum-ion batteries are attractive, there are major challenges to overcome, which include understanding the nature of the passive layer of aluminum oxide on the aluminum anode, the narrow electrochemical window of aqueous electrolytes, and lack of suitable cathodes. Here, we report using experiments in conjunction with DFT simulations to clarify the role of ionic liquids (ILs) in altering the Al solvation dynamics, which in turn affects the aluminum electrochemistry and aqueous-based battery performance significantly.

View Article and Find Full Text PDF

This paper provides an overall view of the current research in micro-electrical discharge machining (micro-EDM or µEDM) and looks into the present understanding of the material removing mechanism and the common approach for electrode material selection and its limitations. Based on experimental data, the authors present an analysis of different materials' properties which have an influence on the electrodes' wear ratio and energy distribution during the spark. The experiments performed in micro-EDM conditions reveal that properties such as and strongly correlate with the discharge energy ratio.

View Article and Find Full Text PDF

Zinc-air batteries (ZABs) offer high specific energy and low-cost production. However, rechargeable ZABs suffer from a limited cycle life. This paper reports that potassium persulfate (KPS) additive in an alkaline electrolyte can effectively enhance the performance and electrochemical characteristics of rechargeable zinc-air flow batteries (ZAFBs).

View Article and Find Full Text PDF

Zn-ion batteries(ZIB) have recently emerged as a promising and rather cheap alternative to Li-ion batteries. However, the divalent charge of Zn limits the choice of cathode materials, whereas the choice of electrolyte is limited by hydrogen-evolution reaction. Polymer cathodes have been shown to be a promising material for ZIB.

View Article and Find Full Text PDF

Developing functional materials via electroless deposition, without the need of external energy is a fascinating concept. Electroless deposition can be subcategorized into galvanic displacement reaction, disproportionation reaction, and deposition in presence of reducing agents. Galvanic displacement reaction is a spontaneous reduction process wherein the redox potentials of the metal/metal ion in the electrolyte govern the thermodynamic feasibility of the process.

View Article and Find Full Text PDF

Liquid-liquid phase separation is mainly dependent on temperature and composition. Electric fields have also been shown to influence demixing of binary liquid mixtures. However, a puzzling behavior that remains elusive is the electric field-induced phase separation in ion-containing solvents at low voltages, as predicted by Tsori and Leibler.

View Article and Find Full Text PDF

Electrode materials as well as the electrolytes play a decisive role in batteries determining their performance, safety, and lifetime. In the last two decades, different types of batteries have evolved. A lot of work has been done on lithium ion batteries due to their technical importance in consumer electronics, however, the development of post-lithium systems has become a focus in recent years.

View Article and Find Full Text PDF

In electrochemistry, the electrode/electrolyte interface (EEI) governs the charge/mass-transfer processes and controls the nucleation/growth phenomena. The EEI in ionic liquids (ILs) can be controlled by changing the cation/anion of the IL, salt concentration, electrode potential, and temperature. Here, we show that adding a dopant salt leads to the deposition of nanowires.

View Article and Find Full Text PDF

Ionic liquids (ILs) form a multilayered structure at the solid/electrolyte interface, and the addition of solutes can alter it. For this purpose, we have investigated the influence of the silver bis(trifluoromethylsulfonyl)amide (AgTFSA) concentration in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py]TFSA) on the layering using in situ atomic force microscopy. AFM investigations revealed that the Au(111)/electrolyte interface indeed depends on the concentration of the salt where a typical " IL" multilayered structure is retained only at quite low concentrations of the silver salt (e.

View Article and Find Full Text PDF

Electroless deposition can be triggered by the difference in the redox potentials between two metals in an electrolyte. In aqueous electrochemistry, galvanic displacement takes place according to the electrochemical series wherein a more noble metal can displace a less noble metal. Herein we show anomalous behaviour in ionic liquids wherein less noble metals such as Fe and Sb were deposited on Cu at temperatures from 25 to 60 °C.

View Article and Find Full Text PDF

Ionic liquids have attracted significant interest as electrolytes for the electrodeposition of metals and semiconductors, but the details of the deposition processes are not yet well understood. In this paper, we give an overview of how the addition of various precursors (TaF, SiCl, and GaCl) affects the solid/IL interfacial structure. In situ Atomic Force Microscopy (AFM) and vibrational spectroscopy have been employed to study the changes of the Au(111)/IL interface and in the electrolytes, respectively.

View Article and Find Full Text PDF

In this work, we report on the influence of an organic ligand on the electrodeposition of Zn from an ionic liquid (IL) electrolyte. Zinc oxide was first dissolved in a protic IL. By introducing a 2-methylimidazole (2-MIm) ligand, the electronic environment of zinc ions, Zn(ii) complexes and the structure of the IL are considerably altered, as verified by both X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

View Article and Find Full Text PDF

Metal nanoparticles such as Au, Ag, Pt, and so forth have been deposited on silicon by electroless deposition in the presence of hydrofluoric acid (HF) for applications such as oxygen reduction reaction, surface-enhanced Raman spectroscopy, as well as for lithium ion batteries. Here, we show an HF-free process wherein metals such as Sb and Ag could be deposited onto electrodeposited silicon in ionic liquids. We further show that, compared to electrodeposited silicon, Sb-modified Si demonstrates a better performance for lithium storage.

View Article and Find Full Text PDF

Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py]FSI) and tested it for lithium ion battery applications.

View Article and Find Full Text PDF

Ionic liquids are potential electrolytes for safe lithium-ion batteries (LIB). Recent research has probed the use of silicon as an anode material for LIB with various electrolytes. However, the nanostructure of the ionic liquid/Si interface is unknown.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are emerging as potential stationary energy storage devices due to the abundance and low cost of sodium. A simple and energy efficient strategy to develop electrodes for SIBs with a high charge/discharge rate is highly desirable. Here we demonstrate that by surface modification of Ge, using electroless deposition in SbCl3/ionic liquids, the stability and performance of the anode can be improved.

View Article and Find Full Text PDF

Metallic zinc is a promising negative electrode for high energy rechargeable batteries due to its abundance, low-cost and non-toxic nature. However, the formation of dendritic zinc and low Columbic efficiency in aqueous alkaline solutions during charge/discharge processes remain a great challenge. Here we demonstrate that the dendritic growth of zinc can be effectively suppressed in an ionic liquid electrolyte containing highly concentrated cationic and anionic zinc complexes obtained by dissolving zinc oxide and zinc trifluoromethylsulfonate in a protic ionic liquid, 1-ethylimidazolium trifluoromethylsulfonate.

View Article and Find Full Text PDF

In this paper, we present investigations of the interface of electrodeposited Ge during lithiation/delithiation in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing 0.5 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI/[Py1,4]TFSI). Cyclic voltammetry (CV) and infrared spectroscopy were used to study the electrochemistry and the changes in the electrolyte during the Li intercalation/deintercalation processes.

View Article and Find Full Text PDF

Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid.

View Article and Find Full Text PDF

Group III-V semiconductor nanostructures are important materials in optoelectronic devices and are being researched in energy-related fields. A simple approach for the synthesis of these semiconductors with well-defined nanostructures is desired. Electroless deposition (galvanic displacement) is a fast and versatile technique for deposition of one material on another and depends on the redox potentials of the two materials.

View Article and Find Full Text PDF

In this communication, we show that the combination of 1 M lithium bis(trifluoromethylsulfonyl)amide and 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide (LiTFSI/[Py1,4]FSI) can be regarded as a possible stable electrolyte for IL based lithium ion batteries. We compare the charge-discharge results with the electrolyte 1 M LiTFSI in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on an electrodeposited Ge electrode and show using a charge-discharge analysis and Raman spectroscopy that 1 M LiTFSI/[Py1,4]FSI is advantageous in maintaining the charge capacity as well as electrolyte stability at high current densities.

View Article and Find Full Text PDF

Group III-V semiconductors are important in the production of a variety of optoelectronic devices. At present, these semiconductors are synthesized by high vacuum techniques. Here we report on the electrochemical deposition of GaN which seems to form in quite a thin layer from NH4Cl and GaCl3 in an ionic liquid.

View Article and Find Full Text PDF

The structure of the electrolyte/electrode interface plays a significant role in electrochemical processes. To date, most studies are focusing on understanding the interfacial structure in pure ionic liquids. In this paper in situ scanning tunnelling microscopy (STM) has been employed to elucidate the structure of the charged Au(111)-ionic liquid (1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, [Py1,4]FAP) interface in the presence of 0.

View Article and Find Full Text PDF

Monatomic steps with a height of 0.25 nm on ultraflat Au(111) surfaces during electrochemical dissolution can be seen for the first time by a laser confocal microscope combined with a differential interference contrast microscope (LCM-DIM). Atomic force microscopy images were acquired in the same area in order to confirm that the step lines observed by LCM-DIM are mostly monatomic steps with the height of 0.

View Article and Find Full Text PDF