Accurate and timely diagnosis for COVID-19 diagnosis allows highly effective antiviral medications to be prescribed. The DASH™ Rapid PCR System is a sample-to-answer point-of-care platform combining state-of-the-art PCR kinetics with sequence specific hybridization. The platform's first assay, the DASH™ SARS-CoV-2/S test for anterior nares direct swab specimens, received FDA Emergency Use Authorization in March 2022 for point-of-care use.
View Article and Find Full Text PDFLiquid infiltration is one of the commonly adapted flow mechanisms in microscale/nanoscale heat-transfer applications. The theoretical modeling of dynamic infiltration profile in the microscale/nanoscale requires a deep study, because the acting forces are entirely different from those of a large-scale system. Herein, a model equation is developed from the fundamental force balance at the microscale/nanoscale level, to capture the dynamic infiltration flow profile.
View Article and Find Full Text PDFBackground: Early infant diagnosis of HIV infection is challenging in sub-Saharan Africa, particularly in rural areas, leading to delays in diagnosis and treatment. Use of a point-of-care test would overcome many challenges. This study evaluated the validity of a novel point-of-care p24 antigen detection test (LYNX) in rural and urban settings in southern Zambia.
View Article and Find Full Text PDFBiosens Bioelectron
April 2013
A low-cost, fully integrated sample-to-answer, quantitative PCR (qPCR) system that can be used for detection of HIV-1 proviral DNA in infants at the point-of-care in resource-limited settings has been developed and tested. The system is based on a novel DNA extraction method, which uses a glass fiber membrane, a disposable assay card that includes on-board reagent storage, provisions for thermal cycling and fluorescence detection, and a battery-operated portable analyzer. The system is capable of automated PCR mix assembly using a novel reagent delivery system and performing qPCR.
View Article and Find Full Text PDFIn this report, we demonstrate the purification of DNA and RNA from a 10% serum sample using an oligonucleotide capture matrix. This approach provides a one-stage, completely aqueous system capable of purifying both RNA and DNA for downstream PCR amplification. The advantages of utilizing the polymer capture matrix method in place of the solid-phase extraction method is that the capture matrix eliminates both guanidine and the 2-propanol wash that can inhibit downstream PCR and competition with proteins for the binding sites that can limit the capacity of the device.
View Article and Find Full Text PDFWe present autonomously-triggered on-chip microfluidic cooling devices that utilize thermo-responsive hydrogels to adapt to local environmental temperatures. An external rotating magnetic stirrer couples with an in situ fabricated nickel impeller in these centrifugal-based microfluidic cooling devices to recirculate cooler water. Temperature-responsive hydrogels, which exhibit volumetric expansion and contraction, are integrated at the axle of the impeller.
View Article and Find Full Text PDFElectrovibration is the tactile sensation of an alternating potential between the human body and a smooth conducing surface when the skin slides over the surface and where the current is too small to stimulate sensory nerves directly. It has been proposed as a high-density tactile display method, for example to display pictographic information to persons who are blind. Previous models for the electrovibration transduction mechanism are based on a parallel-plate capacitor in which the electrostatic force is insensitive to polarity.
View Article and Find Full Text PDFDespite its compactness, the human eye can easily focus on different distances by adjusting the shape of its lens with the help of ciliary muscles. In contrast, traditional man-made optical systems achieve focusing by physical displacement of the lenses used. But in recent years, advances in miniaturization technology have led to optical systems that no longer require complicated mechanical systems to tune and adjust optical performance.
View Article and Find Full Text PDFWe demonstrate a chemical and biological sensing mechanism in microfluidics that transduces chemical and biological signals to electrical signals with large intrinsic amplification without need for complex electronics. The sensing mechanism involves a dissolvable membrane separating a liquid sample chamber from an interdigitated electrode. Dissolution of the membrane (here, a disulfide cross-linked poly(acrylamide) hydrogel) in the presence of a specific target (here, a reducing agent-dithiothreitol) allows the target solution to flow into contact with the electrode.
View Article and Find Full Text PDF