IEEE J Biomed Health Inform
May 2023
Nanorobots are microscopic robots that operate at the molecular and cellular level and can potentially revolutionize fields such as medicine, manufacturing, and environmental monitoring due to their precision. However, the challenge for researchers is to analyze the data and provide a constructive recommendation framework instantly, as most nanorobots demand on-time and near-edge processing. To tackle this challenge, this research presents a novel edge-enabled intelligent data analytics framework called Transfer Learning Population Neural Network (TLPNN) to predict glucose levels and associated symptoms from invasive and non-invasive wearable devices.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
August 2023
Considering the increasing number of communicable disease cases such as COVID-19 worldwide, the early detection of the disease can prevent and limit the outbreak. Besides that, the PCR test kits are not available in most parts of the world, and there is genuine concern about their performance and reliability. To overcome this, in this paper, we develop a novel edge-centric healthcare framework integrating with wearable sensors and advanced machine learning (ML) model for timely decisions with minimum delay.
View Article and Find Full Text PDF