Lung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. Here, we investigated the cellular mechanisms underlying lung IR-induced activation of endothelial TRPV4 channels, which play a central role in lung edema and dysfunction after IR. In a left lung hilar-ligation model of IRI in mice, we found that lung IRI increased the efflux of ATP through pannexin 1 (Panx1) channels at the endothelial cell (EC) membrane.
View Article and Find Full Text PDFLung ischemia-reperfusion injury (IRI), characterized by inflammation, vascular permeability, and lung edema, is the major cause of primary graft dysfunction after lung transplantation. We recently reported that endothelial cell (EC) TRPV4 channels play a central role in lung edema and dysfunction after IR. However, the cellular mechanisms for lung IR-induced activation of endothelial TRPV4 channels are unknown.
View Article and Find Full Text PDFEndothelial cells (ECs) from small pulmonary arteries (PAs) release nitric oxide (NO) and prostacyclin, which lower pulmonary arterial pressure (PAP). In pulmonary hypertension (PH), the levels of endothelium-derived NO and prostacyclin are reduced, contributing to elevated PAP. Small-and intermediate-conductance Ca-activated K channels (IK and SK)-additional crucial endothelial mediators of vasodilation-are also present in small PAs, but their function has not been investigated in PH.
View Article and Find Full Text PDF