The Grand Canonical Monte Carlo (GCMC) ensemble defined by the excess chemical potential, μ , volume, and temperature, in the context of molecular simulations allows for variations in the number of particles in the system. In practice, GCMC simulations have been widely applied for the sampling of rare gasses and water, but limited in the context of larger molecules. To overcome this limitation, the oscillating μ GCMC method was introduced and shown to be of utility for sampling small solutes, such as formamide, propane, and benzene, as well as for ionic species such as monocations, acetate, and methylammonium.
View Article and Find Full Text PDFMolecular dynamic simulations are an effective tool to study complex molecular systems and are contingent upon the availability of an accurate and reliable molecular mechanics force field. The Drude polarizable force field, which allows for the explicit treatment of electronic polarization in a computationally efficient fashion, has been shown to reproduce experimental properties that were difficult or impossible to reproduce with the CHARMM additive force field, including peptide folding cooperativity, RNA hairpin structures, and DNA base flipping. Glycoproteins are essential components of glycoconjugate vaccines, antibodies, and many pharmaceutically important molecules, and an accurate polarizable force field that includes compatibility between the protein and carbohydrate aspect of the force field is essential to study these types of systems.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2022
RNA molecules can act as potential drug targets in different diseases, as their dysregulated expression or misfolding can alter various cellular processes. Noncoding RNAs account for ∼70% of the human genome, and these molecules can have complex tertiary structures that present a great opportunity for targeting by small molecules. In the present study, the site identification by ligand competitive saturation (SILCS) computational approach is extended to target RNA, termed SILCS-RNA.
View Article and Find Full Text PDFExplicit treatment of electronic polarizability in empirical force fields (FFs) represents an extension over a traditional additive or pairwise FF and provides a more realistic model of the variations in electronic structure in condensed phase, macromolecular simulations. To facilitate utilization of the polarizable FF based on the classical Drude oscillator model, Drude Prepper has been developed in CHARMM-GUI. Drude Prepper ingests additive CHARMM protein structures file (PSF) and pre-equilibrated coordinates in CHARMM, PDB, or NAMD format, from which the molecular components of the system are identified.
View Article and Find Full Text PDFNative folded and compact intermediate states of RNA typically involve tertiary structures in the presence of divalent ions such as Mg in a background of monovalent ions. In a recent study, we have shown how the presence of Mg impacts the transition from partially unfolded to folded states through a "push-pull" mechanism where the ion both favors and disfavors the sampling of specific phosphate-phosphate interactions. To further understand the ion atmosphere of RNA in folded and partially folded states results from atomistic umbrella sampling and oscillating chemical potential grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations are used to obtain atomic-level details of the distributions of Mg and K ions around Twister RNA.
View Article and Find Full Text PDFPolarizable force fields are emerging as a more accurate alternative to additive force fields in terms of modeling and simulations of a variety of chemicals including biomolecules. Explicit treatment of induced polarization in charged species such as phosphates and sulfates offers the potential for achieving an improved atomistic understanding of the physical forces driving their interactions with their environments. To help achieve this, in this study we present balanced Drude polarizable force field parameters for molecular ions including phosphates, sulfates, sulfamates, and oxides.
View Article and Find Full Text PDFRNA molecules perform a variety of biological functions for which the correct three-dimensional structure is essential, including as ribozymes where they catalyze chemical reactions. Metal ions, especially Mg, neutralize these negatively charged nucleic acids and specifically stabilize RNA tertiary structures as well as impact the folding landscape of RNAs as they assume their tertiary structures. Specific binding sites of Mg in folded conformations of RNA have been studied extensively; however, the full range of interactions of the ion with compact intermediates and unfolded states of RNA is challenging to investigate, and the atomic details of the mechanism by which the ion facilitates tertiary structure formation is not fully known.
View Article and Find Full Text PDFSodium laureth sulfate (SLES) and fatty acids are common ingredients in many cosmetic products. Understanding how neutral and charged fatty acid compounds partition between micellar and water phases is crucial to achieve the optimal design of the product formulation. In this paper, we first study the formation of mixed SLES and fatty acid micelles using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFBackground: Effective enzymatic degradation of crystalline polysaccharides requires a synergistic cocktail of hydrolytic enzymes tailored to the wide-ranging degree of substrate crystallinity. To accomplish this type of targeted carbohydrate recognition, nature produces multi-modular enzymes, having at least one catalytic domain appended to one or more carbohydrate binding modules (CBMs). The Type B CBM categorization encompasses several families (i.
View Article and Find Full Text PDFUnlabelled: Lytic polysaccharide monooxygenases (LPMOs) are a group of recently discovered enzymes that play important roles in the decomposition of recalcitrant polysaccharides. Here, we report the biochemical, structural, and computational characterization of an LPMO from the white-rot fungus Heterobasidion irregulare (HiLPMO9B). This enzyme oxidizes cellulose at the C1 carbon of glycosidic linkages.
View Article and Find Full Text PDFYKL-40 is a mammalian glycoprotein associated with progression, severity, and prognosis of chronic inflammatory diseases and a multitude of cancers. Despite this well documented association, identification of the lectin's physiological ligand and, accordingly, biological function has proven experimentally difficult. YKL-40 has been shown to bind chito-oligosaccharides; however, the production of chitin by the human body has not yet been documented.
View Article and Find Full Text PDFThe recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose β-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates.
View Article and Find Full Text PDFCarbohydrate-binding modules (CBMs) play significant roles in modulating the function of cellulases, and understanding the protein-carbohydrate recognition mechanisms by which CBMs selectively bind substrate is critical to development of enhanced biomass conversion technology. CBMs exhibit a limited range of specificity and appear to bind polysaccharides in a directional fashion dictated by the position of the ring oxygen relative to the protein fold. The two family 4 CBMs of Cellulomonas fimi Cel9B (CfCBM4) are reported to preferentially bind cellulosic substrates.
View Article and Find Full Text PDF