Background: Multimorbidity clinical risk scores allow clinicians to quickly assess their patients' health for decision making, often for recommendation to care management programs. However, these scores are limited by several issues: existing multimorbidity scores (1) are generally limited to one data group (eg, diagnoses, labs) and may be missing vital information, (2) are usually limited to specific demographic groups (eg, age), and (3) do not formally provide any granularity in the form of more nuanced multimorbidity risk scores to direct clinician attention.
Objective: Using diagnosis, lab, prescription, procedure, and demographic data from electronic health records (EHRs), we developed a physiologically diverse and generalizable set of multimorbidity risk scores.
AMIA Jt Summits Transl Sci Proc
September 2021
We conduct exploratory analysis of a novel algorithm called Model Agnostic Effect Coefficients (MAgEC) for extracting clinical features of importance when assessing an individual patient's healthcare risks, alongside predicting the risk itself. Our approach uses a non-homogeneous consensus-based algorithm to assign importance to features, which differs from similar approaches, which are homogeneous (typically purely based on random forests). Using the MIMIC-III dataset, we apply our method on predicting drivers/causers of unexpected mechanical ventilation in a large cohort patient population.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2020
This study demonstrates that a variant of a Siamese neural network architecture is more effective at classifying high-dimensional radiomic features (extracted from T2 MRI images) than traditional models, such as a Support Vector Machine or Discriminant Analysis. Ninety-nine female patients, between the ages of 20 and 48, were imaged with T2 MRI. Using biopsy pathology, the patients were separated into two groups: those with breast cancer (N=55) and those with GLM (N=44).
View Article and Find Full Text PDF