Unlabelled: Traumatic brain injury (TBI) and subsequent neurodegeneration is partially driven by chronic inflammation both locally and systemically. Yet, current clinical intervention strategies do not mitigate inflammation sequalae necessitating the development of innovative approaches to reduce inflammation and minimize deleterious effects of TBI. Herein, a subcutaneous formulation based on polymer of alpha-ketoglutarate (paKG) delivering glycolytic inhibitor PFK15 (PFKFB3 inhibitor, a rate limiting step in glycolysis), alpha-ketoglutarate (to fuel Krebs cycle) and peptide antigen from myelin proteolipid protein (PLP139-151) was utilized as the prophylactic immunosuppressive formulation in a mouse model of TBI.
View Article and Find Full Text PDFBiomaterials can act as pro- or anti-inflammatory agents. However, effects of biomaterials crystallinity on immune responses are poorly understood. We demonstrate that the adjuvant-like behaviour of covalent organic framework (COF) biomaterial is dependent on its crystallinity.
View Article and Find Full Text PDFRheumatoid arthritis (RA) causes immunological and metabolic imbalances in tissue, exacerbating inflammation in affected joints. Changes in immunological and metabolic tissue homeostasis at different stages of RA are not well understood. Herein, the changes in the immunological and metabolic profiles in different stages in collagen induced arthritis (CIA), namely, early, intermediate, and late stage is examined.
View Article and Find Full Text PDFRheumatoid Arthritis (RA) is a chronic debilitating disease characterized by auto-immune reaction towards self-antigen such as collagen type II. In this study, we investigated the impact of exponentially decreasing levels of antigen exposure on pro-inflammatory T cell responses in the collagen-induced arthritis (CIA) mouse model. Using a controlled delivery experimental approach, we manipulated the collagen type II (CII) antigen concentration presented to the immune system.
View Article and Find Full Text PDFInhibition of glycolysis in immune cells and cancer cells diminishes their activity, and thus combining immunotherapies with glycolytic inhibitors is challenging. Herein, a strategy is presented where glycolysis is inhibited in cancer cells using PFK15 (inhibitor of PFKFB3, rate-limiting step in glycolysis), while simultaneously glycolysis and function is rescued in DCs by delivery of fructose-1,6-biphosphate (F16BP, one-step downstream of PFKFB3). To demonstrate the feasibility of this strategy, vaccine formulations are generated using calcium-phosphate chemistry, that incorporate F16BP, poly(IC) as adjuvant, and phosphorylated-TRP2 peptide antigen and tested in challenging and established YUMM1.
View Article and Find Full Text PDFCovalent organic framework (COF) crystalline biomaterials have great potential for drug delivery since they can load large amounts of small molecules (e.g. metabolites) and release them in a controlled manner, as compared to their amorphous counterparts.
View Article and Find Full Text PDFMetabolic reprogramming of immune cells modulates their function and reduces the severity of autoimmune diseases. However, the long-term effects of the metabolically reprogrammed cells, specifically in the case of immune flare-ups, need to be examined. Herein, a re-induction rheumatoid arthritis (RA) mouse model was developed by injecting T-cells from RA mice into drug-treated mice to recapitulate the effects of T-cell-mediated inflammation and mimic immune flare-ups.
View Article and Find Full Text PDFAlthough different metabolic pathways have been associated with distinct macrophage phenotypes, the field of utilizing metabolites to modulate macrophage phenotype is in a nascent stage. In this report, we developed microparticles based on polymerization of alpha-ketoglutarate (a Krebs cycle metabolite), with or without encapsulation of spermine (a polyamine metabolite), to modulate cell phenotype that are critical for resolution of inflammation. Poly (alpha-ketoglutarate) microparticles encapsulated and released spermine (spermine (encap)paKG MPs) in vitro, which was accelerated in an acidic environment.
View Article and Find Full Text PDF