Publications by authors named "Abhinav Parate"

Background: Our group has established the feasibility of using on-body electrocardiographic (ECG) sensors to detect cocaine use in the human laboratory. The purpose of the current study was to test whether ECG sensors and features are capable of discriminating cocaine use from other non-cocaine sympathomimetics.

Methods: Eleven subjects with cocaine use disorder wore the Zephyr BioHarness™ 3 chest band under six experimental (drug and non-drug) conditions, including 1) laboratory, intravenous cocaine self-administration, 2) after a single oral dose of methylphenidate, 3) during aerobic exercise, 4) during tobacco use (N=7 who smoked tobacco), and 5) during routine activities of daily inpatient living (unit activity).

View Article and Find Full Text PDF

The field of mobile health (mHealth) has the potential to yield new insights into health and behavior through the analysis of continuously recorded data from wearable health and activity sensors. In this paper, we present a hierarchical span-based conditional random field model for the key problem of jointly detecting discrete events in such sensor data streams and segmenting these events into high-level activity sessions. Our model includes higher-order cardinality factors and inter-event duration factors to capture domain-specific structure in the label space.

View Article and Find Full Text PDF

Smoking-induced diseases are known to be the leading cause of death in the United States. In this work, we design , a mobile solution that leverages a wristband containing a 9-axis inertial measurement unit to capture changes in the orientation of a person's arm, and a machine learning pipeline that processes this data to accurately detect smoking gestures and sessions in real-time. Our key innovations are fourfold: a) an arm trajectory-based method that extracts candidate hand-to-mouth gestures, b) a set of trajectory-based features to distinguish smoking gestures from confounding gestures including eating and drinking, c) a probabilistic model that analyzes sequences of hand-to-mouth gestures and infers which gestures are part of individual smoking sessions, and d) a method that leverages multiple IMUs placed on a person's body together with 3D animation of a person's arm to reduce burden of self-reports for labeled data collection.

View Article and Find Full Text PDF