The Z-Scheme function within molecular systems has been rarely reported for solar energy conversion although it offers the possibility to achieve higher efficiency than single photon absorber photosystems due to the use of a wider range of visible light. In this study, we synthesized and investigated the electrochemical and spectroscopic properties of two new dyads based on ruthenium and osmium tris-bipyridine complexes covalently linked via a butane bridge to explore their ability to realize the Z-scheme function once immobilized on TiO. These dyads can be grafted onto a nanocrystalline TiO film via the osmium complex bearing two dicarboxylic acid bipyridine ligands, while the ruthenium complex contains either two unsubstituted bipyridine ancillary ligands (RuH-Os) or two (4,4'-bis-trifluoromethyl-bipyridine) ancillary ligands (RuCF3-Os).
View Article and Find Full Text PDFThe oxygenic photosynthesis of green plants, green algae, and cyanobacteria is the major provider of energy-rich compounds in the biosphere. The so-called "Z-scheme" is at the heart of this "engine of life". Two photosystems (photosystem I and II) work in series to build up a higher redox ability than each photosystem alone can provide, which is necessary to drive water oxidation into oxygen and NADP(+) reduction into NADPH with visible light.
View Article and Find Full Text PDFIn recent years, nanotechnology has gained significant interest for applications in the medical field. In this regard, a utilization of the ZnO nanoparticles for the efficient degradation of bilirubin (BR) through photocatalysis was explored. BR is a water insoluble byproduct of the heme catabolism that can cause jaundice when its excretion is impaired.
View Article and Find Full Text PDFLight-harvesting nanohybrids (LHNs) are systems composed of an inorganic nanostructure associated with an organic pigment that have been exploited to improve the light-harvesting performance over individual components. The present study is focused on developing a potential LHN, attained by the functionalization of dense arrays of ZnO nanorods (NRs) with a biologically important organic pigment hematoporphyrin (HP), which is an integral part of red blood cells (hemoglobin). Application of spectroscopic techniques, namely, Fourier transform infrared spectroscopy (FTIR) and Raman scattering, confirm successful monodentate binding of HP carboxylic groups to Zn(2+) located at the surface of ZnO NRs.
View Article and Find Full Text PDFThe design of synthetic nanoparticles (NPs) capable of recognizing given chemical entities in a specific and predictable manner is of great fundamental and practical importance. Herein, we report a simple, fast, water-soluble, and green phosphine free colloidal synthesis route for the preparation of multifunctional enzyme-capped ZnS bionanocomposites (BNCs) with/without transitional metal-ion doping. The enzymes α-Chymotrypsin (CHT), associated with the NPs, are demonstrated as an effectual host for organic dye Methylene Blue (MB) revealing the molecular recognition of such dye molecules by the BNCs.
View Article and Find Full Text PDFFree-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material.
View Article and Find Full Text PDFImproving the performance of photoactive solid-state devices begins with systematic studies of the metal-semiconductor nanocomposites (NCs) upon which such devices are based. Here, we report the photo-dependent excitonic mechanism and the charge migration kinetics in a colloidal ZnO-Au NC system. By using a picosecond-resolved Förster resonance energy transfer (FRET) technique, we have demonstrated that excited ZnO nanoparticles (NPs) resonantly transfer visible optical radiation to the Au NPs, and the quenching of defect-mediated visible emission depends solely on the excitation level of the semiconductor.
View Article and Find Full Text PDFAlthough rifampicin (Rf) is one of the most effective antibiotics against infection caused by Mycobacterium tuberculosis, interaction of the drug with universal carrier protein in human blood plasma is not fully understood. Reduction of medicinal efficacy of other drugs, including anti-thrombosis drug warfarin (Wf), to the patients on Rf therapy also needs molecular understanding. In the present work we have studied interaction of Rf with one of the model carrier protein (human serum albumin).
View Article and Find Full Text PDFThe excited state dynamics of core-shell type semiconductor quantum dots (QDs) of various sizes in close contact with a plasmonically active silver thin film has been demonstrated by using picosecond resolved fluorescence spectroscopy. The non-radiative energy transfer from the QDs to the metal surface is found to be of Förster resonance energy transfer (FRET) type rather than the widely expected nano-surface energy transfer (NSET) type. The slower rate of energy transfer processes compared to that of the electron transfer from the excited QDs to an organic molecule benzoquinone reveals an insignificant possibility of charge migration from the QDs to the metallic film.
View Article and Find Full Text PDFIn this contribution, we report studies on the nature of binding of a potent antituberculosis drug, Rifampicin (RF) with a model drug delivery system, sodium dodecyl sulfate (SDS) micelle. Temperature dependent dynamic light scattering (DLS), conductometry, and circular dichroism (CD) spectroscopy have been employed to study the binding interaction of the drug with the micelle. The absorption spectrum of the drug RF in the visible region has been employed to study Förster resonance energy transfer (FRET) from another fluorescent drug Hoechst 33258 (H33258), bound to the micelle.
View Article and Find Full Text PDFThe intrinsic fluorescent amino acid tryptophan is the unanimous choice for the spectroscopic investigation of proteins. However, several complicacies in the interpretation of tryptophan fluorescence in a protein are inevitable and an alternative intrinsic protein probe is a longstanding demand. In this contribution, we report an electron-transfer reaction in a human transporter protein (HSA) cavity which causes the tryptophan residue (Trp214) to undergo chemical modification to form one of its metabolites kynurenine (Kyn214).
View Article and Find Full Text PDFWe report molecular functionalization of the promising manganite nanoparticles La0.67Sr0.33MnO3 (LSMO) for their solubilization in aqueous environments.
View Article and Find Full Text PDFWe have explored light harvesting of the complex of ZnO nanoparticles with the biological probe Oxazine 1 in the near-infrared region using picosecond-time-resolved fluorescence decay studies. We have used ZnO nanoparticles and Oxazine 1 as a model donor and acceptor, respectively, to explore the efficacy of the Förster resonance energy transfer (FRET) in the nanoparticle-dye system. It has been shown that FRET from the states localized near the surface and those in the bulk of the ZnO nanoparticles can be resolved by measuring the resonance efficiency for various wavelengths of the emission spectrum.
View Article and Find Full Text PDFThe control of the spontaneous emission (SE) rate of dye molecules (4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) and Coumarin 523 (C523)) embedded in the Porous Silicon (PS) matrix has been studied using picosecond resolved fluorescence decay and polarization studies. We have shown that the SE rates of the two organic dyes embedded in the PS matrix depend on the relative positions of the emission maxima of the dyes with respect to electronic band gap energy of the PS matrix. We have also explored that the electronic band gap of the host PS matrix can easily be tuned by partial oxidation of the PS and the nature of SE of the embedded dyes can be tuned accordingly.
View Article and Find Full Text PDFUnderstanding the sequence dependent molecular recognition of DNA is crucial for the rational design of many drugs. Femtosecond resolved studies on the hydration dynamics of the dodecamer duplexes having sequences (CGCGAATTCGCG)2 and (CGCAAATTTGCG)2, and their complexes with the nucleic protein histone 1 (H1) reveal significant correlation of the molecular recognition of the DNA and DNA-protein complexes with the dynamics of hydration. The different molecular recognition of DNA and DNA-protein complexes is also borne out by circular dichroism (CD) and fluorescence detected CD measurements.
View Article and Find Full Text PDFIn this work we describe design and use of a fiber-optic based optical system for the spectroscopic studies on the samples under the presence of strong ambient light. The system is tested to monitor absorption, emission, and picosecond-resolved fluorescence transients simultaneously with a time interval of 500 ms for several hours on a biologically important sample (vitamin B2) under strong UV light. An efficient stray-light rejection ratio of the setup is achieved by the confocal geometry of the excitation and detection channels.
View Article and Find Full Text PDF