Ovarian cancer remains a major public health issue due to its poor prognosis. To develop more effective therapies, it is crucial to set-up reliable models that closely mimic the complexity of the ovarian tumor's microenvironment. 3D bioprinting is currently a promising approach to build heterogenous and reproducible cancer models with controlled shape and architecture.
View Article and Find Full Text PDFA homozygous mutation of human tyrosyl-DNA phosphodiesterase 1 (TDP1) causes the neurodegenerative syndrome, spinocerebellar ataxia with axonal neuropathy (SCAN1). TDP1 hydrolyzes the phosphodiester bond between DNA 3'-end and a tyrosyl moiety within trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). TDP1 is critical for mitochondrial DNA (mtDNA) repair; however, the role of mitochondria remains largely unknown for the etiology of SCAN1.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2019
Mitochondrion, the powerhouse of the cells, controls bioenergetics, biosynthesis, metabolism, and signaling. Consequently, it has become an unorthodox target for cancer therapeutics. However, specific targeting of mitochondria into subcellular milieu in cancer cells remains a major challenge.
View Article and Find Full Text PDFChalcone and boronic acids are important privileged structures in myriads of natural and synthetic products having diverse biological activities. However, their therapeutic window is highly narrow due to their hydrophobic nature affecting unpredictable biodistribution. To address this, we herein have synthesized a novel hybrid glycosylated chalcone-boronic acid library.
View Article and Find Full Text PDFIndium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs.
View Article and Find Full Text PDFThis report describes the hitherto unobserved cisplatin induced self-assembly of 2D-graphene oxide sheets into 3D-spherical nano-scale particles. These nanoparticles can encompass dual DNA damaging drugs simultaneously. A combination of confocal microscopy, gel electrophoresis and flow cytometry studies clearly demonstrated that these novel nanoparticles can internalize into cancer cells by endocytosis, localize into lysosomes, and damage DNA, leading to apoptosis.
View Article and Find Full Text PDFA pure aqueous phase recognition and corresponding detoxification of highly toxic cyanide ions has been achieved by a fluorescent metal-organic framework (MOF). The cyanide detoxification has been shown to be effective even in in vitro studies and the MOF could be recycled to show the same efficiency of detoxification.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
Detouring of conventional DNA damaging anticancer drugs into mitochondria to damage mitochondrial DNA is evolving as a promising strategy in chemotherapy. Inhibiting single target in mitochondria would eventually lead to the emergence of drug resistance. Moreover, targeting mitochondria selectively in cancer cells, keeping them intact in healthy cells, remains a major challenge.
View Article and Find Full Text PDFEffective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus.
View Article and Find Full Text PDF