The effects of interfacial molecular mobility on the thermal boundary conductance (TBC) across graphene-water and graphene-perfluorohexane interfaces were investigated using non-equilibrium molecular dynamics simulations. The molecular mobility was varied by equilibrating nanoconfined water and perfluorohexane at different temperatures. The long-chain molecules of perfluorohexane exhibited a prominent layered structure, indicating a low molecular mobility, over a wide temperature range between 200 and 450 K.
View Article and Find Full Text PDFThe anisotropic heat transport in graphene-CNT based materials provoked the development of three-dimensional pillared-graphene (PG) systems. In this study, we performed non-equilibrium molecular dynamics simulations to analyze PG thermal conductivity and thermal boundary conductance. For the first time, we have considered the influence of pillar chirality and the temperature effect on PG heat transport.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2023
A new method is proposed to model the thermal boundary resistance (TBR) at the nanoscale, solid-liquid interface from macroscopic observables that characterize a nanoscale interface. We correlated the TBR with thermodynamic state variables, material properties, and geometric parameters to derive a generalized relationship with the help of data-driven heuristic algorithms. The results show that TBR can be expressed in terms of physical observables of the systems and material-specific parameters.
View Article and Find Full Text PDFThe controlled transport of water through nanoscale devices is an important requirement in the design and development of various nanofluidic systems. Molecular dynamics simulations are performed to investigate the phonon coupling induced thermophoretic transport of water through a carbon nanotube (CNT). Phonon coupling is believed to have a significant role in the transport of heat at the liquid-solid interface.
View Article and Find Full Text PDF