Publications by authors named "Abhijit R Kulkarni"

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels having many functions including inflammation control, as part of the cholinergic anti-inflammatory pathway. Genome wide association studies implicated RIC3, a chaperone of nAChRs, in multiple sclerosis (MS), a neuroinflammatory disease. To understand the involvement of RIC3 in inflammatory diseases we examined its expression, regulation, and function in activated immune cells.

View Article and Find Full Text PDF

Homomeric 7 nicotinic acetylcholine receptors (nAChR) have an intrinsically low probability of opening that can be overcome by 7-selective positive allosteric modulators (PAMs), which bind at a site involving the second transmembrane domain (TM2). Mutation of a methionine that is unique to 7 at the 15' position of TM2 to leucine, the residue in most other nAChR subunits, largely eliminates the activity of such PAMs. We tested the effect of the reverse mutation (L15'M) in heteromeric nAChR receptors containing 4 and 2, which are the nAChR subunits that are most abundant in the brain.

View Article and Find Full Text PDF

Also expressed in various peripheral tissues, the type-1 cannabinoid receptor (CB1R) is the predominant G protein-coupled receptor (GPCR) in brain, where it is responsible for retrograde control of neurotransmitter release. Cellular signaling mediated by CB1R is involved in numerous physiological processes, and pharmacological CB1R modulation is considered a tenable therapeutic approach for diseases ranging from substance-use disorders and glaucoma to metabolic syndrome. Despite the design and synthesis of a variety of bioactive small molecules targeted to the CB1R orthosteric ligand-binding site, the potential of CB1R as a therapeutic GPCR has been largely unrealized due to adverse events associated with typical orthosteric CB1R agonists and antagonists/inverse agonists.

View Article and Find Full Text PDF

Recently, α7 nicotinic acetylcholine receptors (nAChRs), primarily activated by binding of orthosteric agonists, represent a target for anti-inflammatory and analgesic drug development. These receptors may also be modulated by positive allosteric modulators (PAMs), ago-allosteric ligands (ago-PAMs), and α7-silent agonists. Activation of α7 nAChRs has been reported to increase the brain levels of endogenous ligands for nuclear peroxisome proliferator-activated receptors type-α (PPAR-α), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in a Ca-dependent manner.

View Article and Find Full Text PDF

Background And Purpose: GAT107 ((3aR,4S,9bS)-4-(4-bromo-phenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta-[c]quinoline-8-sulfonamide) is a positive allosteric modulator (PAM) and agonist of α7 nicotinic acetylcholine receptors (nAChRs)that can cause a prolonged period of primed potentiation of acetylcholine responses after drug washout. NS6740 is a silent agonist of α7 nAChRs that has little or no efficacy for activating the ion channel but induces stable desensitization states, some of which can be converted into channel-active states by PAMs. Although GAT107 and NS6740 appear to stably induce different non-conducting states, both agents are effective treatment for inflammation and inflammatory pain models.

View Article and Find Full Text PDF

We report a facile, microwave-accelerated, one-pot tandem synthesis of unsymmetrical ureas via a Curtius rearrangement. In this method, one-pot microwave irradiation of commercially available (hetero)aromatic acids and amines in the presence of diphenylphosphoryl azide enabled extremely rapid (1-5 min) construction of an array of unsymmetrical ureas in good to excellent yields. We demonstrate the utility of our method in the efficient, gram-scale synthesis of key biologically active compounds targeting the cannabinoid 1 and α7 nicotinic acetylcholine receptors.

View Article and Find Full Text PDF

One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit.

View Article and Find Full Text PDF

The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with "orthosteric" agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function.

View Article and Find Full Text PDF

Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site.

View Article and Find Full Text PDF

The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of neurological disorders including chronic pain and inflammatory diseases. Since α7 can function as a ligand-gated ion channel, drug development initially focused on ligands that were selective activators of the α7 ion channel. However, the best α7 drugs for chronic pain and inflammation indications may not be ion channel activators but rather "silent agonists", which bind to the receptor but preferentially induce non-conducting states that modulate signal transduction in non-neuronal cells.

View Article and Find Full Text PDF

We report here an efficient and expeditious microwave-assisted synthesis of cyclopentadiene ring-fused tetrahydroquinolines using the three-component Povarov reaction catalyzed by indium (III) chloride. This method has an advantage of shorter reaction time (10 - 15 min) with high and reproducible yields (up to 90%) and is suitable for parallel library synthesis. The optimization process is reported and the results from the microwave route are compared with those of the conventional synthetic route.

View Article and Find Full Text PDF

GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not.

View Article and Find Full Text PDF

An expeditious microwave-assisted synthesis of 4BP-TQS, its enantiomeric separation, and their functional evaluation is reported. Electrophysiological characterization in Xenopus oocytes revealed that activity exclusively resided in the (+)-enantiomer 1b (GAT107) and (-)-enantiomer 1a did not affect its activity when coapplied. X-ray crystallography studies revealed the absolute stereochemistry of 1b to be 3aR,4S,9bS.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: