Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFHerein, we present a novel liquid crystal (LC)-based sensing platform utilizing microgel-stabilized Pickering LC droplets dispersed in water for simple and label-free detection of proteins in an aqueous environment. This could be achieved by tailoring the surface of 4-cyano-4'-pentylbiphenyl (5CB) LC droplets dispersed in aqueous medium through the interfacial adsorption of poly(-isopropylacrylamide) (PNIPAM) microgel particles, followed by the introduction of model surfactants, such as anionic sodium dodecyl sulfate and cationic dodecyltrimethylammonium bromide. These surfactant/microgel complex-coated LC droplets underwent a configurational transition from radial-to-bipolar under a polarized optical microscope, upon exposure to model proteins, namely bovine serum albumin and lysozyme.
View Article and Find Full Text PDFAn economically viable and greener approach is introduced to fabricate red emissive carbon dots (R@CQDs) via employing hydrothermal means on Hibiscus rosa-sinensis leaves as precursor source. The obtained R@CQDs displayed excitation-dependent behavior, with high aqueous stability, quantum yield of 56%, and outstanding fluorescence aptitude under the conditions of varied range of ionic strength and pH (1-12). The fluorescence emission behavior of R@CQDs displayed selective turn off fluorescence response to tartrazine over other interfering species with a limit of detection of 0.
View Article and Find Full Text PDFHerein, we demonstrate for the first time the synthesis of ultra-stable, spherical, nematic liquid crystal (LC) droplets of narrow size polydispersity coated by sustainable, biodegradable, plant-based materials that trigger a typical bipolar-to-radial configurational transition in dynamic response to chemical and biological analytes. Specifically, a highly soluble polymer, potato protein (PoP) and a physically-crosslinked potato protein microgel (PoPM) of ∼100 nm in diameter, prepared from the PoP, a byproduct of the starch industry, were compared for their ability to coat LC droplets. Although both PoP and PoPM were capable of reducing the interfacial tension between water and -tetradecane <30 mN m, PoPM-coated LC droplets showed better stability than the PoP-coated droplets a Pickering-like mechanism.
View Article and Find Full Text PDFWe report a promising strategy based on chitosan (CS) hydrogels and dual temperature- and pH-responsive poly(-isopropylacrylamide--methacrylic acid) (PNIPAM--MAA) microgels to facilitate release of a model drug, moxifloxacin (MFX). In this protocol, first, the microgels were prepared using a free radical copolymerization method, and subsequently, these carboxyl-group-rich soft particles were incorporated inside the hydrogel matrix using an EDC-NHS amidation method. Interestingly, the resulting microgel-embedded hydrogel composites (MG-HG) acting as a double barrier system largely reduced the drug release rate and prolonged the delivery time for up to 68 h, which was significantly longer than that obtained using microgels or hydrogels alone (20 h).
View Article and Find Full Text PDFHerein, we report a facile, ultrasensitive, and selective fluorescence turn-on sensing strategy based on green-light-emitting functional nanodots for the detection of bacterial lipopolysaccharide (LPS) endotoxin. In this protocol, first, the pure carbon dots (CDs) with a fairly high quantum yield were prepared by microwave-assisted pyrolysis of citric acid in the presence of urea. Subsequently, the carboxyl-group-rich surfaces of the CDs were allowed to conjugate with the poly-l-lysine (PLL) using an EDC-NHS amidization method to obtain the PLL-modified CDs (PLL-CDs).
View Article and Find Full Text PDFHerein, we report controlled protein adsorption and delivery of thermo- and pH-responsive poly(-isopropylacrylamide--methacrylic acid) (PNIPAM--MAA) microgels at different temperatures, pH values and ionic strengths by employing bovine serum albumin (BSA) as a model protein. For these dual-responsive microgels, we found that the BSA adsorption was driven by several of six competing contributions, , physical diffusion (PD), hydrophobic interactions (HI), electrostatic attraction (EA), hydrogen bonding (HB) and temperature or pH-induced seizing action (SA or SA), depending on the temperature and pH of the solution. Compared to the pure PNIPAM microgels, the higher swelling degree of the PNIPAM--MAA microgels allowed a large amount of BSA loading under any experimental conditions.
View Article and Find Full Text PDFHerein, we report a systematic study of the adsorption behaviour of short oligo(ethylene glycol) (OEG) chains incorporated into poly(N-isopropylaccrylamide) (PNIPAM) microgels at the dodecane-water interface as a function of the microgel concentration at two different temperatures: 298 and 313 K. The dynamic interfacial tension of the interface for the adsorption of these functional microgels is measured by means of a pendent drop method. We find that similar to pure PNIPAM microgels, the functionalized microgels initially get transported from the bulk to the interface, where they undergo the deformability dependent spreading process, and thus leading to a reduction of interfacial tension.
View Article and Find Full Text PDFHerein, we report a novel approach that involves Pickering stabilization of micometer-sized liquid crystal (LC) droplets with biocompatible soft materials such as a whey protein microgel (WPM) to facilitate the analysis of analyte-induced configurational transition of the LC droplets. The WPM particles were able to irreversibly adsorb at the LC-water interface, and the resulting WPM-stabilized LC droplets possessed a remarkable stability against coalescence over time. Although the LC droplets were successfully protected by a continuous network of the WPM layer, the LC-water interface was still accessible for small molecules such as sodium dodecyl sulfate (SDS) that could diffuse through the meshes of the adsorbed WPM network or through the interfacial pores and induce an LC response.
View Article and Find Full Text PDFHerein, we report synthesis of thermoresponsive poly(N-isopropylaccrylamide) (PNIPAM) microgels with short oligo(ethylene glycol) (OEG) chain comonomers (1 to 4/5 repeating unit) by surfactant-free precipitation copolymerization. The efficient incorporation of the comonomers was confirmed by a complete set of characterization methods viz., FTIR, 1H NMR, TEM, DLS, and viscometry.
View Article and Find Full Text PDFWe develop a new strategy that involves the formation of microgel (MG) decorated liquid crystal (LC) droplets, which show remarkable stability. This system facilitates the analysis of the LC droplets that undergo an analyte-triggered conformational transition, thus optimizing the quantitation of aqueous analytes.
View Article and Find Full Text PDFOscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out).
View Article and Find Full Text PDFThe interfacial behavior of β-casein (βCS) has been investigated in presence of the cationic surfactant dodecyl trimethyl ammonium bromide (DoTAB) at the water/hexane interface and compared to that obtained for the water/air interface. The used experimental technique is a drop profile analysis tensiometer specially equipped with a coaxial double capillary, which allows investigation of sequential adsorption of individual components besides the traditional simultaneous adsorption of two species. This method also provides the dilational rheological measurements based on low frequency harmonic drop oscillations.
View Article and Find Full Text PDFThe physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration.
View Article and Find Full Text PDF{[Cu(2)(H(2)L)(OH)(H(2)O)].(ClO(4))(2)(H(2)O)} (1) serves as a selective azide ion fluorescent sensor in aqueous medium. 1 binds with N(3)(-) to give [Cu(6)(HL)(2)(mu(1,1)-N(3))(6)] (2) which imposes rigidity and decreases the non-radiative decay of the excited state to give rise to fluorescent enhancement.
View Article and Find Full Text PDFInulin, a polydisperse reserve polysaccharide, has prospective uses in food, pharmacy, and industry. Its uses and applications often encounter interactions with lipids and amphiphiles. Reports on such interactions are scarcely found in literature.
View Article and Find Full Text PDFPhysicochemical properties viz., aggregation, molar mass, shape, and size of chicory inulin in solution were determined by fluorimetry, DLS, SLS, TEM, and viscometry methods. The thermal stability of the biopolymer was examined by TGA, DTA, and DSC measurements.
View Article and Find Full Text PDFThis article deals with the solution properties of poly(vinylpyrrolidone) (PVP) in salt and surfactant environment. The cloud point (CP) of PVP has been found to be induced by the salts NaCl, KCl, KBr, Na2SO4, MgSO4, and Na3PO4. On the basis of CP values for a salt at different [PVP], the energetics of the clouding process have been estimated.
View Article and Find Full Text PDFThe surface activity of isopropanol (IP) and poly(vinylpyrrolidone) (PVP) at the air/water interface has been studied. The self-aggregation of sodium dodecyl sulfate (SDS) in IP-water as well as in IP-PVP-water media has been investigated using physical methods, viz., tensiometry, conductometry, calorimetry, and viscometry.
View Article and Find Full Text PDFRate constants for the attachment of DABCO (1,4-diazabicyclo[2.2.2]octane) to Fischer carbene complexes of the type (CO)(5)Cr=C(XR)C(6)H(4)Z (X = O and S) in dry MeCN at 25 degrees C are reported.
View Article and Find Full Text PDF