Effects of electronic and atomic structures of V-doped 2D layered SnS are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS is ≈4 but also the charge transfer (CT) from V to ligands, supported by V L resonant inelastic X-ray scattering.
View Article and Find Full Text PDFSynchrotron-based X-ray spectroscopic and microscopic techniques are used to identify the origin of enhancement of the photoelectrochemical (PEC) properties of BiVO (BVO) that is coated on ZnO nanodendrites (hereafter referred to as BVO/ZnO). The atomic and electronic structures of core-shell BVO/ZnO nanodendrites have been well-characterized, and the heterojunction has been determined to favor the migration of charge carriers under the PEC condition. The variation of charge density between ZnO and BVO in core-shell BVO/ZnO nanodendrites with many unpaired O 2p-derived states at the interface forms interfacial oxygen defects and yields a band gap of approximately 2.
View Article and Find Full Text PDFA series of Eu-activated strontium silicate phosphors, SrSiO:xEu (SSO:xEu, x = 1.0, 2.0 and 5.
View Article and Find Full Text PDFContact angle measurements (surface wettability) of the electrolytes (1 M KOH, NaOH and LiOH) and their combination (1 M 1 : 1 v/v LiOH + KOH, NaOH + KOH and LiOH + NaOH) in contact with ZnFe2O4 nano-flake based electrodes is used as an empirical diagnostic tool to pre-evaluate the performance of a supercapacitor prior to actual fabrication of the device.
View Article and Find Full Text PDF