Publications by authors named "Abhidev V V"

Capturing vascular dynamics using ultrasound at a high framerate provided a unique way to track time-dependent and transient physiologic events non-invasively. In this work, we present an A-model high-framerate (500 frames per second) image-free ultrasound system for monitoring vascular structural and material properties. It was developed based on our clinically validated ARTSENS technology.

View Article and Find Full Text PDF

A series of physiological measures can be assessed from the arterial pulse waveform, which is beneficial for cardiovascular health diagnosis, monitoring, and decision making. In this work, we have investigated the variations in regional pulse wave velocity (PWVR) and other pulse waveform indexes such as reflected wave transit time (RWTT), augmentation index (Alx), ejection duration index (ED), and subendocardial viability ratio (SEVR) with blood pressure (BP) parameters and heartrate on a vasoconstrictor drug-induced porcine model. Two healthy female (nulliparous and non-pregnant) Sus scrofa swine (~ 80 kg) was used for the experimental study.

View Article and Find Full Text PDF

Intervention in the early stages of cardiovascular and kidney diseases is proven to be more effective in preventing disease progression. Large artery stiffness measurement can be a potential early predictor of future risks. The purpose of the study reported in this work was to demonstrate the feasibility of our ARTSENS Pen device as a high-throughput vascular screening tool for risk assessment.

View Article and Find Full Text PDF

Pulse wave velocity (PWV) is a function of the artery's material property, and its incremental nature in elastic modulus led to the concept of incremental PWV. Recent advancements in technology paved the way for reliable measurement of the variation in PWV within a cardiac cycle. This change in PWV has shown its potential as a biomarker for advanced cardiovascular diagnostics, screening, and has recently started using as a vascular screening tool and medical device development.

View Article and Find Full Text PDF

We have developed an accelerometric system with a custom-designed patch probe and signal acquisition hardware to acquire the carotid wall displacement from the soft tissue surface for arterial stiffness evaluation. A subject-specific calibration model was developed to estimate the morphology of accurate carotid diameter waveform, using a standard ultrasound B-mode imaging system as the reference. Following the one-time calibration, the accelerometric system continuously acquired a non-invasive carotid lumen diameter waveform.

View Article and Find Full Text PDF

Flow mediated dilation (FMD) is a clinically accepted non-invasive tool for assessing endothelial dysfunction. FMD is conventionally performed with B-mode ultrasound systems that involve recording of the image sequences as DICOM files or video-graphic files and processing them offline. Sometimes the examinations may have to be rejected due to poor or unstable image sequences resulting non-reliable diameter estimates.

View Article and Find Full Text PDF

We present a system with an accelerometer patch probe design for non-invasive evaluation of carotid arterial stiffness. The proposed system could continuously measure the acceleration signal derived due to the propagation of blood pulse wave through the left carotid artery, double integrating and scaling it to estimate the accelerometer-derived carotid wall displacement. This functional principle was proved by comparing the accelerometer-derived carotid wall displacement with the carotid distension signal from the reference system ARTSENS® (ARTerial Stiffness Evaluation for Noninvasive Screening device) for all the recruited human subjects.

View Article and Find Full Text PDF

Local pulse wave velocity (PWV) is evolving as one of the important determinants of arterial hemodynamics, localized vessel stiffening associated with several pathologies, and a host of other cardiovascular events. Although PWV was introduced over a century ago, only in recent decades, due to various technological advancements, has emphasis been directed toward its measurement from a single arterial section or from piecewise segments of a target arterial section. This emerging worldwide trend in the exploration of instrumental solutions for local PWV measurement has produced several invasive and noninvasive methods.

View Article and Find Full Text PDF