Benzo-fused γ-lactams are fundamental in medicinal chemistry, acting as essential elements for various therapeutic agents due to their structural adaptability and capability to enhance biological activity. In their synthesis, transition metals play a pivotal role as catalysts, offering more efficient alternatives to traditional methods by facilitating C-N bond formation through mechanisms like intramolecular coupling. Recent advances have especially spotlighted transition-metal-catalyzed C-H amination reactions for directly converting C(sp)-H to C(sp)-N bonds, streamlining the creation of these compounds.
View Article and Find Full Text PDFCyclooxygenase-2 (COX-2), a key enzyme in the inflammatory pathway, is the target for various nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors known as coxibs. This study focuses on the development of novel imidazole derivatives as COX-2 inhibitors, utilizing a Structure-Activity Relationship (SAR) approach to enhance binding affinity and selectivity. Molecular docking was performed using Autodock Vina, revealing binding energies of -6.
View Article and Find Full Text PDFStrigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (, and ) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors.
View Article and Find Full Text PDF