Curr Protein Pept Sci
December 2024
Human paraoxonase 1 (hPON1) is a Ca2+-dependent metalloenzyme with multifunctional properties. Due to its diverse roles as arylesterase, phosphotriesterase, and lactonase, it plays a significant role in disease conditions. Researchers across the globe have demonstrated different properties of PON1, like anti-oxidant, anti-inflammatory, anti-atherogenic, anti-diabetic, and OPneutralization.
View Article and Find Full Text PDFAngiogenesis plays a pivotal role in various pathological conditions, making it a key target in therapeutic development. Anti-angiogenic therapies are gaining traction for their potential in treating a range of angiogenesis-dependent diseases. Among these, endogenous angiogenesis inhibitors, particularly endostatin, have garnered significant attention for their therapeutic potential.
View Article and Find Full Text PDFConventional antibodies [full-length and fragments: F(ab'), fragment antigen-binding (Fab), single-chain variable fragment (scFv), variable heavy domain of heavy chain antibody (VHH)] are monospecific, first-generation antibodies, that have dominated the biopharmaceuticals field. However, protein engineering approaches has led to the advent of the next-generation antibodies (polybodies), which are significant improvement over the conventional antibodies. Polybodies comprise polyspecific and/or polyvalent antibodies that enable a single antibody to target multiple specific antigens simultaneously.
View Article and Find Full Text PDFThe rapid increase in cancer cases worldwide necessitates the development of novel therapeutic approaches. Therapies targeting cancer's altered metabolism, especially those that deplete critical amino acids, have emerged as promising ones, some of which are already being used in clinical practice and many others are under development. This study reports the anti-cancer activity of two novel fused human arginase I (FHA) variants, FHA-3 and FHA-12, assessed using the NCI-60 human tumor cell line panel.
View Article and Find Full Text PDFNerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning.
View Article and Find Full Text PDFTargeted therapy and imaging are the most popular techniques for the intervention and diagnosis of cancer. A potential therapeutic target for the treatment of cancer is the epidermal growth factor receptor (EGFR), primarily for glioblastoma, lung, and breast cancer. Over-production of ligand, transcriptional up-regulation due to autocrine/paracrine signalling, or point mutations at the genomic locus may contribute to the malfunction of EGFR in malignancies.
View Article and Find Full Text PDFLiver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates. Given that established treatments, such as stereotactic body radiation therapy and transarterial radioembolization, face accessibility and affordability challenges, the emerging focus on cancer cell metabolism, particularly arginine (Arg) depletion, offers a promising research avenue.
View Article and Find Full Text PDFThe 21st-century beginning remarked with the huge success of monospecific MAbs, however, in the last couple of years, polyspecific MAbs (PsAbs) have been an interesting topic and show promise of being biobetter than monospecific MAbs. Polyspecificity, in which a single antibody serves multiple specific target binding, has been hypothesized to contribute to the development of a highly effective antibody repertoire for immune defence. This polyspecific MAb trend represents an explosion that is gripping the whole pharmaceutical industry.
View Article and Find Full Text PDFAngiogenesis is the physiological process that results in the formation of new blood vessels develop from pre-existing vasculature and plays a significant role in several physiological and pathological processes. Inhibiting angiogenesis, a crucial mechanism in the growth and metastasis of cancer, has been proposed as a potential anticancer therapy. Different studies showed the beneficial effects of angiogenesis inhibitors either in patients suffering from different cancers, alone or in combination with conventional therapies.
View Article and Find Full Text PDFDrug Discov Today
January 2024
Medicine has benefited greatly from the development of monoclonal antibody (mAb) technology. First-generation mAbs have seen significant success in the treatment of major diseases, such as autoimmune, inflammation, cancer, infectious, and cardiovascular diseases. Developing next-generation antibodies with improved potency, safety, and non-natural characteristics is a booming field of mAb research.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2024
Background: L-asparaginase (ASNase) has played a key role in the management of acute lymphoblastic leukaemia (ALL). As an amidohydrolase, it catalyzes the hydrolysis of L-asparagine, a crucial step in the treatment of ALL. Various ASNase variants have evolved from diverse sources since it was first used in paediatric patients in the 1960s.
View Article and Find Full Text PDFRecombinant human arginase I (rhArg I) have emerged as a potential candidate for the treatment of varied pathophysiological conditions ranging from arginine-auxotrophic cancer, inflammatory conditions and microbial infection. However, rhArg I have a low circulatory half-life, leading to poor pharmacokinetic and pharmacodynamic properties, which necessitating the rapid development of modifications to circumvent these limitations. To address this, polyethylene glycol (PEG)ylated-rhArg I variants are being developed by pharmaceutical companies.
View Article and Find Full Text PDFWith high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid.
View Article and Find Full Text PDFThe essence of the growth and development of therapeutic conventional monoclonal antibodies (MAbs) for the treatment of various disorders is the aptitude of MAbs to precisely bind a target antigen and neutralise or promote its activity. However, the conventional antibodies are monoclonal i.e.
View Article and Find Full Text PDFOrganophosphates (OPs) are highly neurotoxic compounds and certain OP-compounds are also exploited as a weapon of mass destruction and chemical warfare in terrorist attacks. Available prophylactic and post-exposure treatments are less effective and also have serious side-effects. Thus, there is a dire need to develop effective and safe prophylactic agent(s) against OP-poisoning.
View Article and Find Full Text PDFAsthma prevailed as a common inflammatory disease affecting mainly the lower respiratory tract, with notable inflammation in the upper airways leading to significant morbidity and mortality. An extensive search for a new therapeutic target is continuously being carried out. Still, the majority have failed in the trials, and eventually, the drugs, including β-adrenergic agonists, muscarinic antagonists, and certain corticosteroids, remain the backbone for asthma control.
View Article and Find Full Text PDFCurr Protein Pept Sci
December 2022
Apolipoprotein-mimetic peptides, mimicking the biological properties of apolipoproteins, have shown beneficial properties against various diseases (central and peripheral diseases) and have emerged as potential candidates for their treatments. Progress has been made from first-generation to second-generation apolipoprotein-mimetic peptides. Understanding these peptides from the first generation to the second generation is discussed in this review.
View Article and Find Full Text PDFArginine, a conditionally essential amino acid, plays a crucial role in several metabolic and signalling pathways. Arginine metabolism in the body can be significantly increased under stress or during certain pathological conditions. Depletion of circulating arginine by administering arginine-hydrolysing enzyme has been shown to mitigate varied pathophysiological conditions ranging from cancer, inflammatory conditions, and microbial infection.
View Article and Find Full Text PDFThe prevalence and burden of CNS disorders are increasing significantly due to the increase in life span and population. The contemporary need in CNS drug discovery is to develop the therapy that can halt the disease progression (disease-modifying therapy). While developing such CNS therapies, the major bottleneck is the blood-brain barrier (BBB) impermeability of drugs that influences the development of effective therapies to treat various CNS disorders.
View Article and Find Full Text PDFRecombinant human interferon-β (rhIFN-β) is therapeutically important and new commercially viable approaches are needed for its increased production. In this study, a codon-optimized gene encoding for rhIFN-β protein was designed and expressed in SE1. As a first step of medium optimization, growth of as a function of different media components was studied.
View Article and Find Full Text PDFBackground: Peptides derived from the apolipoproteins (apo-mimetic peptides) have emerged as a potential candidate for the treatment of various inflammatory conditions. Our previous results have shown that peptides derived from human apolipoprotein-E interact with various pro-inflammatory lipids and inhibit their inflammatory functions in cellular assays.
Objective: In this study, two apoE-derived peptides were selected to investigate their antiinflammatory and anti-oxidative effects in streptozotocin-induced diabetic model of inflammation and oxidative stress.
With the advancement of medicine, the utility of protein therapeutics is increasing exponentially. However, a significant number of protein therapeutics suffer from grave limitations, which include their subpar pharmacokinetics. In this study, we have reviewed the emerging field of protein chimerization for improving the short circulatory half-life of protein therapeutics.
View Article and Find Full Text PDFNerve agents have been used extensively in chemical warfare in the past. However, recent use of Novichok agents have reignited the debate on the threat posed by Organophosphorus Nerve Agents (OPNAs). The currently available therapy for OPNA toxicity is only symptomatic and is potentially ineffective in neutralizing OPNAs.
View Article and Find Full Text PDF