Ion specificity and related Hofmeister effects, which are ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large-scale cohesive swelling and shrinkage behaviors of soil and sediments. We have used a semiatomistic computational approach and examined sodium, calcium, and aluminum counterions confined with water between charged surfaces representative of clay materials to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which cannot be captured by existing theories.
View Article and Find Full Text PDFLike-charge attraction, driven by ionic correlations, challenges our understanding of electrostatics both in soft and hard matter. For two charged planar surfaces confining counterions and water, we prove that, even at relatively low correlation strength, the relevant physics is the ground-state one, oblivious of fluctuations. Based on this, we derive a simple and accurate interaction pressure that fulfills known exact requirements and can be used as an effective potential.
View Article and Find Full Text PDFBackground: Open online forums like Reddit provide an opportunity to quantitatively examine COVID-19 vaccine perceptions early in the vaccine timeline. We examine COVID-19 misinformation on Reddit following vaccine scientific announcements, in the initial phases of the vaccine timeline.
Methods: We collected all posts on Reddit (reddit.
Cement is the most produced material in the world. A major player in greenhouse gas emissions, it is the main binding agent in concrete, providing a cohesive strength that rapidly increases during setting. Understanding how such cohesion emerges is a major obstacle to advances in cement science and technology.
View Article and Find Full Text PDF