Publications by authors named "Abeyou Worqlul"

Article Synopsis
  • The research examines how big data from citizen science can address data scarcity for watershed simulations.
  • The study focuses on two watersheds in Ethiopia, using the SWAT model to evaluate how different resolutions of Digital Elevation Model (DEM) and soil data impact streamflow and sediment yield simulations.
  • Results indicate that finer resolutions improve simulations in smaller watersheds but show no significant effect in larger ones, suggesting that scale matters in the effectiveness of spatial data for watershed management.
View Article and Find Full Text PDF

The hydrology of mountainous watersheds in the western United States is significantly influenced by snow year-round. It is widely known that topography affects precipitation; however, the knowledge of how watershed rainfall designation methods affect streamflow is not well understood for high-relief areas. The objectives of this study were to assess the predictive capability of the Agricultural Policy/Environmental eXtender (APEX) model to simulate streamflow in a snowmelt-dominated watershed with high spatial rainfall variability through (a) allocating weather stations to sub-basins based on a conventional Thiessen polygon method (CM) or a rainfall-elevation-based input (RE) and using an areal average Parameter-Elevation Regression on Independent Slopes Model (PRISM) rainfall designation and (b) improving the snowmelt processes in the Price River watershed, Utah.

View Article and Find Full Text PDF

This study was conducted to evaluate the effectiveness of best management practices (BMPs) to reduce soil erosion in Gumara watershed of the Abbay (Upper Blue Nile) Basin using the Soil and Water Assessment Tool (SWAT) model. The model was calibrated (1995-2002) and validated (2003-2007) using the SWAT-CUP based on observed streamflow and sediment yield data at the watershed outlet. The study evaluated four individual BMP Scenarios; namely, filter strips (FS), stone/soil bunds (SSB), grassed waterways (GW) and reforestation of croplands (RC), and three blended BMP Scenarios, which combines individual BMPS of FS and RC (FS & RC), GW and RC (GW & RC), and SSB and GW (SSB & GW).

View Article and Find Full Text PDF

Assessing the potential impacts of different land management practices helps to identify and implement sustainable watershed management measures. This study aims to assess a change in soil erosion rate under different land management practices in the Gilgel Abay watershed of the upper Blue Nile basin, Ethiopia. The Revised Universal Soil Loss Equation (RUSLE) model that was adapted to the Ethiopian highlands context was employed to estimate the rate of soil erosion.

View Article and Find Full Text PDF

Water resource development opens up opportunities for improving smallholder farmer livelihoods in sub-Saharan Africa; however, implementation of water resource interventions to ensure sustainability hinges on the availability of sufficient quantity and quality data for monitoring, analysis and planning. Such data is often acquired through instrumentation of water resources (e.g.

View Article and Find Full Text PDF

The severity and frequency of climate extremes will change in the future owing to global warming. This can severely impact the natural environment. Therefore, it is common practice to project climate extremes with a global climate model (GCM) in order to quantify and manage the associated risks.

View Article and Find Full Text PDF

Understanding the hydrological response of a watershed to land use/land cover (LULC) changes is imperative for water resources management planning. The objective of this study was to analyze the hydrological impacts of LULC changes in the Andassa watershed for a period of 1985-2015 and to predict the LULC change impact on the hydrological status in year 2045. The hybrid land use classification technique for classifying Landsat images (1985, 2000 and 2015); Cellular-Automata Markov (CA-Markov) for prediction of the 2030 and 2045 LULC states; the Soil and Water Assessment Tool (SWAT) for hydrological modeling were employed in the analyses.

View Article and Find Full Text PDF

This study investigates multi-dimensional impacts of adopting new technology in agriculture at the farm/village and watershed scale in sub-Saharan Africa using the Integrated Decision Support System (IDSS). Application of IDSS as an integrated modeling tool helps solve complex issues in agricultural systems by simultaneously assessing production, environmental, economic, and nutritional consequences of adopting agricultural technologies for sustainable increases in food production and use of scarce natural resources. The IDSS approach was applied to the Amhara region of Ethiopia, where the scarcity of resources and agro-environmental consequences are critical to agricultural productivity of small farm, to analyze the impacts of alternative agricultural technology interventions.

View Article and Find Full Text PDF

Modeling of suspended sediment emission into freshwater lakes is challenging due to data gaps in developing countries. Existing models simulate sediment concentration at a gauging station upstream and none of these studies had modeled total suspended solids (TSS) emissions by inflowing rivers to freshwater lakes as there are no TSS measurements at the river mouth in the upper Blue Nile basin. In this study a 10year TSS time series data generated from remotely sensed MODIS/Terra images using established empirical relationship is applied to calibrate and validate a hydrology model for Lake Tana in Upper Blue Nile Basin.

View Article and Find Full Text PDF