The molecular mechanism of the heme protein, hemoglobin (Hb) interaction with sulfa molecule, sulfadiazine (SDZ) has been investigated through spectroscopic, neutron scattering and molecular modeling techniques. Absorption and emission spectroscopic studies showed that SDZ molecules were bound to Hb protein, non-cooperatively. The binding affinityof SDZ-Hb complex at standard experimental condition was evaluated to be around (4.
View Article and Find Full Text PDFProtein-ligand interaction studies are useful to determine the molecular mechanism of the binding phenomenon, leading to the establishment of the structure-function relationship. Here, we report the binding of well-known antibiotic sulfonamide drugs (sulfamethazine, SMZ; and sulfadiazine, SDZ) with heme protein myoglobin (Mb) using spectroscopic, calorimetric, ζ potential, and computational methods. Formation of a 1:1 complex between the ligand and Mb through well-defined equilibrium was observed.
View Article and Find Full Text PDFSulfonamide (or sulphonamide) functional group chemistry (SN) forms the basis of several groups of drug. In vivo sulfonamides exhibit a range of pharmacological activities, such as anti-carbonic anhydrase and anti-t dihydropteroate synthetase allowing them to play a role in treating a diverse range of disease states such as diuresis, hypoglycemia, thyroiditis, inflammation, and glaucoma. Sulfamethazine (SMZ) is a commonly used sulphonamide drug in veterinary medicine that acts as an antibacterial compound to treat livestock diseases such as gastrointestinal and respiratory tract infections.
View Article and Find Full Text PDF