Chronic obstructive pulmonary disease (COPD) is characterized by systemic and local chronic inflammation and oxidative stress. The sources of the increased oxidative stress in COPD patients derive from the increased burden of inhaled oxidants such as cigarette smoke and other forms of particulate or gaseous air pollution and from the increase in reactive oxygen species (ROS) generated by several inflammatory, immune, and structural airways cells. There is increasing evidence that genetic factors may also contribute to the pathogenesis if COPD, particularly antioxidant genes, which may confer a susceptibility to environmental insults such as cigarette smoke and thereafter development of COPD.
View Article and Find Full Text PDFThis study was undertaken to ascertain if a relationship existed between oxidative status and polymorphisms of microsomal epoxide hydrolase X1 (EPHX1), glutathione S-transferase P1 (GSTP1), GSTM1, and GSTT1 in chronic obstructive pulmonary disease (COPD). Erythrocyte glutathione peroxidase (GSH-px), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and plasma GST activities and total antioxidant status (TAS) as antioxidative stress markers were determined and compared either with individual and combined genotypes of EPHX1 exon 3, GSTP1 exon 5, GSTM1, and GSTT1 polymorphisms in COPD patients and healthy controls from the central area of Tunisia. Statistical data processing revealed significantly lower GSH-px, GR, SOD, CAT, GST, and TAS values in COPD patients in comparison to the control group (P < .
View Article and Find Full Text PDF