Publications by authors named "Abel Suarez-Fueyo"

CD38 has emerged as a potential therapeutic target for patients with systemic lupus erythematosus (SLE) but it is not known whether CD38 alters CD4 T cell function. Using primary human T cells and CD38-sufficient and CD38-deficient Jurkat T cells, we demonstrate that CD38 shifts the T cell lipid profile of gangliosides from GM3 to GM2 by upregulating B4GALNT1 in a Sirtuin 1-dependent manner. Enhanced expression of GM2 causes ER stress by enhancing Ca flux through the PLCγ1-IP3 pathway.

View Article and Find Full Text PDF

Objectives: The aim of these studies was to characterise the molecular effects of a tool JAK1 inhibitor on cultured primary fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) through both total and individual cell analysis.

Methods: RA-FLS cultures from 6 (Bulk RNA-seq) or 4 (ScRNA-seq) donors were pre-treated with various concentrations (100 nM and 1μM) of ABT-317 with/without exposure to 25% SEB-conditioned PBMC medium to mimic the RA inflammatory milieu. Cells were subjected to both bulk RNA-seq (36 libraries) and single cell RNA-seq (scRNA-seq; 24 libraries) to identify biological processes impacted by CM and ABT-317 treatments.

View Article and Find Full Text PDF
Article Synopsis
  • Crohn's disease (CD) is a type of inflammatory bowel disease marked by damage throughout the intestinal wall, and achieving "transmural healing" (TH) is seen as important for effective treatment and remission.
  • Current research on Crohn's has largely focused on the intestinal lining, neglecting the role of the deeper intestinal wall.
  • By using advanced techniques to analyze immune and cell profiles in both the mucosal and deeper layers, researchers found differences in gene expression and protein profiles that could help identify new therapies for chronic refractory CD aimed at achieving TH.
View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is characterized by a dysregulated intestinal epithelial barrier leading to breach of barrier immunity. Here we identified similar protein expression changes between IBD and Citrobacter rodentium-infected FVB mice with respect to dysregulation of solute transporters as well as components critical for intestinal barrier integrity. We attribute the disease associated changes in the model to the emergence of undifferentiated intermediate intestinal epithelial cells.

View Article and Find Full Text PDF

Protein phosphatase 2A (PP2A) composed of a scaffold subunit, a catalytic subunit, and multiple regulatory subunits is a ubiquitously expressed serine/threonine phosphatase. We have previously shown that the PP2A catalytic subunit is increased in T cells from patients with systemic lupus erythematosus and promotes IL-17 production by enhancing the activity of Rho-associated kinase (ROCK) in T cells. However, the molecular mechanism whereby PP2A regulates ROCK activity is unknown.

View Article and Find Full Text PDF

Patients with systemic lupus erythematosus (SLE) suffer frequent infections that account for significant morbidity and mortality. T cell cytotoxic responses are decreased in patients with SLE, yet the responsible molecular events are largely unknown. We find an expanded CD8CD38 T cell subset in a subgroup of patients with increased rates of infections.

View Article and Find Full Text PDF

Hyaluronic acid (HA), a component of the extracellular matrix, is the ligand for CD44 and has been implicated in the pathogenesis of kidney inflammation in patients with systemic lupus erythematosus (SLE), but its direct role and mechanism of action have not been studied. Here we show that administration of hymecromone (4-Methylumbelliferone, 4-MU), an HA synthesis inhibitor, to lupus-prone mice suppressed dramatically lupus-related pathology. Interestingly, 4-MU stopped the appearance of disease when administered prior to its onset and inhibited the progression of disease when administered after its appearance.

View Article and Find Full Text PDF
Article Synopsis
  • The tumor microenvironment in leukemia and solid tumors forces activated CD8 T cells into an exhausted state, which hampers their ability to proliferate and form effective immune responses.
  • Research using mouse models for chronic lymphocytic leukemia (CLL) and melanoma showed that the SLAMF6 receptor plays a key role in regulating these exhausted T cells, as its presence led to an expansion of dysfunctional T-cell populations.
  • Administering anti-SLAMF6 treatment not only reduced tumor burden in leukemia models but also improved T-cell functionality, indicating that targeting SLAMF6 could be a promising therapeutic approach for various cancers.
View Article and Find Full Text PDF

Objective: Glutaminase 1 (Gls1) is the first enzyme in glutaminolysis. The selective Gls1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) suppresses Th17 development and ameliorates experimental autoimmune encephalomyelitis (EAE). The present study was undertaken to investigate whether inhibition of glutaminolysis is beneficial for the treatment of systemic lupus erythematosus (SLE), and the involved mechanisms.

View Article and Find Full Text PDF

Objective: Signaling lymphocytic activation molecule family member 1 (SLAMF1) homophilic interactions promote immunoglobulin production and T cell-B cell cross-talk. SLAMF1 is overexpressed on T and B cells in patients with systemic lupus erythematosus (SLE). This study was undertaken to determine the role of SLAMF1 monoclonal antibody (mAb) in modulating T cell-B cell interaction and B cell activation.

View Article and Find Full Text PDF

Cytotoxic function and cytokine profile of NK cells are compromised in patients with systemic lupus erythematosus (SLE). CD3ζ, an important molecule for NK cell activation, is downregulated in SLE T cells and contributes to their altered function. However, little is known about the role of CD3ζ in SLE NK cells.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease linked to profound defects in the function and phenotype of T lymphocytes. Here, we describe abnormal signaling pathways that have been documented in T cells from patients with SLE and discuss how they impact gene expression and immune function, in order to understand how they contribute to disease development and progression.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs. A complex interaction of genetics, environment, and hormones leads to immune dysregulation and breakdown of tolerance to self-antigens, resulting in autoantibody production, inflammation, and destruction of end-organs. Emerging evidence on the role of these factors has increased our knowledge of this complex disease, guiding therapeutic strategies and identifying putative biomarkers.

View Article and Find Full Text PDF

Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells.

View Article and Find Full Text PDF

Systemic Lupus Erythematosus is an autoimmune disorder caused by a complex combination of genetic, epigenetic and environmental factors. Different polymorphisms and epigenetic modifications lead to altered gene expression and function of several molecules which lead to abnormal T cell responses. Metabolic and functional alterations result in peripheral tolerance failures and biased differentiation of T cells into pro-inflammatory and B cell-helper phenotypes as well as the accumulation of disease-promoting memory T cells.

View Article and Find Full Text PDF

Homeostasis of the immune system depends on the proper function of regulatory T cells (T(reg) cells). Compromised suppressive activity of T(reg) cells leads to autoimmune disease and graft rejection and promotes anti-tumor immunity. Here we report a previously unrecognized requirement for the serine-threonine phosphatase PP2A in the function of T(reg) cells.

View Article and Find Full Text PDF

Background: T cells regulate the adaptive immune response and have altered function in autoimmunity. Systemic Lupus Erythematosus (SLE) has great diversity of presentation and treatment response. Peripheral blood component gene expression affords an efficient platform to investigate SLE immune dysfunction and help guide diagnostic biomarker development for patient stratification.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease generated and maintained throughout life by autoreactive T and B cells. Class I phosphoinositide 3-kinases (PI3K) are heterodimers composed of a regulatory and a catalytic subunit that catalyze phosphoinositide-3,4,5-P3 formation and regulate cell survival, migration, and division. Activity of the PI3Kδ isoform is enhanced in human SLE patient PBLs.

View Article and Find Full Text PDF

Introduction: Synovial fibroblasts (SF) undergo phenotypic changes in rheumatoid arthritis (RA) that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38) expression by RA SF.

Methods: Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls.

View Article and Find Full Text PDF

Background: Sublingual administration of Phleum pratense allergen immunotherapy (SLIT) tablets is a clinically efficient treatment for grass pollen-induced rhinoconjunctivitis. This immunotherapy downregulates TH2 immune responses, induces tolerogenic pathways, and increases regulatory T cells. However, associated immune response markers of allergen desensitization remain undefined.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease caused by the action of autoreactive T and B cells. Class I phosphoinositide-3-kinases (PI3K) are enzymes that trigger formation of 3-poly-phosphoinositides that induce cell survival. Enhanced PI3K activation is a frequent event in human cancer.

View Article and Find Full Text PDF