Finding suitable p-type dopants, as well as reliable doping and characterization methods for the emerging wide bandgap semiconductor [Formula: see text]-[Formula: see text] could strongly influence and contribute to the development of the next generation of power electronics. In this work, we combine easily accessible ion implantation, diffusion and nuclear transmutation methods to properly incorporate the Cd dopant into the [Formula: see text]-[Formula: see text] lattice, being subsequently characterized at the atomic scale with the Perturbed Angular Correlation (PAC) technique and Density Functional Theory (DFT) simulations. The acceptor character of Cd in [Formula: see text]-[Formula: see text] is demonstrated, with Cd sitting in the octahedral Ga site having a negative charge state, showing no evidence of polaron deformations nor extra point defects nearby.
View Article and Find Full Text PDFAccurate nuclear quadrupole moment values are essential as benchmarks for nuclear structure models and for the interpretation of experimentally determined nuclear quadrupole interactions in terms of electronic and molecular structure. Here, we present a novel route to such data by combining perturbed γ-γ angular correlation measurements on free small linear molecules, realized for the first time within this work, with state-of-the-art ab initio electronic structure calculations of the electric field gradient at the probe site. This approach, also feasible for a series of other cases, is applied to Hg and Cd halides, resulting in Q(^{199}Hg,5/2^{-})=+0.
View Article and Find Full Text PDF