Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide.
View Article and Find Full Text PDFIn this work, the biological potency of nitazoxanide (NTZ) was enhanced through coordination with transition metal ions Cu(II), Ni(II), and Zn(II). Initially, complexes with a ligand-metal stoichiometry of 2:1 were successfully synthesized and characterized by spectroscopic techniques and thermogravimetric methods. Measurement of the infrared spectrum revealed the bidentate nature of the ligand and excluded the possibility of the metal ion-amide group interaction.
View Article and Find Full Text PDFIt has been repeatedly reported that nitazoxanide (NTZ) exhibits a wide range of antiviral activities against various viral infections and has shown antimicrobial properties against anaerobic bacteria, helminths and protozoa. To improve these properties, three novel metal complexes were synthesized. The bidentate characteristic of the NTZ ligand was characterized by different spectroscopic techniques, including Fourier transform infrared (FT-IR), thermogravimetric, nuclear magnetic resonance (NMR) and UV - visible spectroscopy.
View Article and Find Full Text PDFVanadium compounds have been set in various fields as anticancer, anti-diabetic, anti-parasitic, anti-viral, and anti-bacterial agents. This study reports the synthesis and structural characterization of oxidovanadium(IV)-based imidazole drug complexes by the elemental analyzer, molar conductance, magnetic moment, spectroscopic techniques, as well as thermal analysis. The obtained geometries were studied theoretically using density functional theory (DFT) under the B3LYP level.
View Article and Find Full Text PDFThree rings 2-hydroxypyridine liquid crystalline compounds have been prepared and fully characterized. The mesomorphic behavior of the prepared compounds has been investigated in terms of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Moreover, a comparative study between the prepared compounds and previously reported analogs has been discussed in terms of the orientation and position of the mesogenic core, in addition to the direction of the terminal alkyl chains.
View Article and Find Full Text PDFFour new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔN) showed the practical biological potency of [VO(CTZ)] 2HO.
View Article and Find Full Text PDFThree new uranyl complexes [(UO2)(OAc)2(CMZ)], [(UO2)(OAc)2(MP)] and [(UO2)(OAc)2(SCZ)] were synthesized and characterized by elemental analysis, FT-IR, UV-Vis spectroscopy, powder XRD analysis, and molar conductivity. The IR analysis confirmed binding to the metal ion by the sulfur and ethoxy oxygen atoms in the carbimazole (CMZ) ligand, while in the 6-mercaptopurine (MP) ligand, the sulfur and the N7 nitrogen atom of a purine coordinated binding to the metal ion. The third ligand showed a 1:1 molar ratio and bound via sulfonamide oxygen and the nitrogen of the pyrimidine ring.
View Article and Find Full Text PDFIn the search for novel, metal-based drug complexes that may be of value as anticancer agents, five new transition metal complexes of sulfaclozine (SCZ) with Cu(II), Co(II), Ni(II), Zn(II), and Fe(II) were successfully synthesized. The chemical structure of each complex was characterized using elemental analysis (CHN), IR spectroscopy, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and electronic paramagnetic resonance (EPR) spectroscopy. IR spectra indicated that the donor atoms were one sulfonyl oxygen atom and one pyrazine nitrogen atom, which associated with the metal ions to form a stable hexagonal coordination ring.
View Article and Find Full Text PDFConformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed.
View Article and Find Full Text PDFThe sulfonic esters of N-oxyimides are a group of compounds with a wide range of biological activities, as well as a unique reactivity toward amines. They undergo this reaction with primary amines and other nucleophilic reagents according to a Lossen-like rearrangement. The reaction is initiated by nucleophilic attack on a carbonyl group in the succinimide ring followed by isocyanate formation, which next interacts with another nucleophile molecule forming an addition product (e.
View Article and Find Full Text PDFMethyl 4-hydroxybenzoate, commonly known as methyl paraben, is an anti-microbial agent used in cosmetics and personal-care products, and as a food preservative. In this study, the single crystal X-ray structure of methyl 4-hydroxybenzoate was determined at 120 K. The crystal structure comprises three methyl 4-hydroxybenzoate molecules condensed to a 3D framework via extensive intermolecular hydrogen bonding.
View Article and Find Full Text PDF