T-cells play a significant role in the development of autoimmune diseases. The CD28-B7 costimulatory pathway is crucial for activating T-cells, and blocking this pathway is essential for treating autoimmune diseases. Therapeutic antibodies and fusion proteins that target costimulatory molecules like CD80, CD86, CTLA-4, and CD28 have been developed to explore the costimulation process and as targeted treatments.
View Article and Find Full Text PDFElevating soluble CD80 (sCD80) in human serum is a natural response to autoimmune diseases such as rheumatoid arthritis (RA). The level of sCD80 is associated with RA development and prognosis; therefore, it is potentially used as a biomarker. sCD80 is commonly measured in human serum using immunoassays (e.
View Article and Find Full Text PDFAccording to studies, the microbiome may contribute to the emergence and spread of breast cancer. is one of the Enterobacteriaceae family recently found to be present as part of the breast tissue microbiota. In this study, we focused on the effect of secretome free of cells on MCF-7 metabolism.
View Article and Find Full Text PDFBackground And Aims: Rheumatoid arthritis (RA) is a chronic autoimmune disease. RA-induced immunological responses are coordinated by T-cell stimulation. The costimulatory signal CD28-B7 is essential for T-cell activation by interacting CD28 with CD80 and CD86 costimulatory proteins.
View Article and Find Full Text PDFThe relationship between lipid metabolism and bone mineral density (BMD) is still not fully elucidated. Despite the presence of investigations using osteoporotic animal models, clinical studies in humans are limited. In this work, untargeted lipidomics profiling using liquid chromatography-mass spectrometry (LC-MS) analysis of human serum samples was performed to identify the lipidomics profile associated with low bone mineral density (LBMD), with a subsequent examination of potential biomarkers related to OP risk prediction or progression.
View Article and Find Full Text PDFDexamethasone (Dex) is a synthetic glucocorticoid (GC) drug commonly used clinically for the treatment of several inflammatory and immune-mediated diseases. Despite its broad range of indications, the long-term use of Dex is known to be associated with specific abnormalities in several tissues and organs. In this study, the metabolomic effects on five different organs induced by the chronic administration of Dex in the Sprague-Dawley rat model were investigated using the chemical isotope labeling liquid chromatography-mass spectrometry (CIL LC-MS) platform, which targets the amine/phenol submetabolomes.
View Article and Find Full Text PDFProlonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague-Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins ( = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats.
View Article and Find Full Text PDFDexamethasone (Dex) is a synthetic glucocorticoid that has anti-inflammatory and immunosuppressant effects and is used in several conditions such as asthma and severe allergy. Patients receiving Dex, either at a high dose or for a long time, might develop several side effects such as hyperglycemia, weight change, or osteoporosis due to its non-selectivity. Herein, we used liquid chromatography-tandem mass spectrometry-based comprehensive targeted metabolomic profiling as well as radiographic imaging techniques to study the side effects of Dex treatment in rats.
View Article and Find Full Text PDF