Publications by authors named "Abeegithan Jeyasothy"

This article presents a new approach for providing an interpretation for a spiking neural network classifier by transforming it to a multiclass additive model. The spiking classifier is a multiclass synaptic efficacy function-based leaky-integrate-fire neuron (Mc-SEFRON) classifier. As a first step, the SEFRON classifier for binary classification is extended to handle multiclass classification problems.

View Article and Find Full Text PDF

This paper presents a new time-varying long-term Synaptic Efficacy Function-based leaky-integrate-and-fire neuRON model, referred to as SEFRON and its supervised learning rule for pattern classification problems. The time-varying synaptic efficacy function is represented by a sum of amplitude modulated Gaussian distribution functions located at different times. For a given pattern, the SEFRON's learning rule determines the changes in the amplitudes of weights at selected presynaptic spike times by minimizing a new error function reflecting the differences between the desired and actual postsynaptic firing times.

View Article and Find Full Text PDF