Publications by authors named "Abdurrahman Keskin"

Identifying and managing the most critical side effects encourages patients to take medications regularly and adhere to the course of treatment. Therefore, priority should be given to the more important ones, among these side effects. However, the number of studies that make a priority examination is limited.

View Article and Find Full Text PDF

Protein degradation is known to be a key component of expression regulation for individual genes, but its global impact on gene expression has been difficult to determine. We analyzed a parallel gene expression dataset of yeast meiotic differentiation, identifying instances of coordinated protein-level decreases to identify new cases of regulated meiotic protein degradation, including of ribosomes and targets of the meiosis-specific anaphase-promoting complex adaptor Ama1. Comparison of protein and translation measurements over time also revealed that, although meiotic cells are capable of synthesizing protein complex members at precisely matched levels, they typically do not.

View Article and Find Full Text PDF

Levels of the ribosome, the conserved molecular machine that mediates translation, are tightly linked to cellular growth rate. In humans, ribosomopathies are diseases associated with cell-type-specific pathologies and reduced ribosomal protein (RP) levels. Because gene expression defects resulting from ribosome deficiency have not yet been experimentally defined, we systematically probed mRNA, translation, and protein signatures that were either unlinked from or linked to cellular growth rate in RP-deficient yeast cells.

View Article and Find Full Text PDF

Prokaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Cellular stress responses often require transcription-based activation of gene expression to promote cellular adaptation. Whether general mechanisms exist for stress-responsive gene downregulation is less clear. A recently defined mechanism enables both up- and downregulation of protein levels for distinct gene sets by the same transcription factor via coordinated induction of canonical mRNAs and long undecoded transcript isoforms (LUTIs).

View Article and Find Full Text PDF

Metabolic regulation has been recognized as a powerful principle guiding immune responses. Inflammatory macrophages undergo extensive metabolic rewiring marked by the production of substantial amounts of itaconate, which has recently been described as an immunoregulatory metabolite . Itaconate and its membrane-permeable derivative dimethyl itaconate (DI) selectively inhibit a subset of cytokines , including IL-6 and IL-12 but not TNF.

View Article and Find Full Text PDF

To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein.

View Article and Find Full Text PDF

Background: During the generation and evolution of the eukaryotic cell, a proteobacterial endosymbiont was re-fashioned into the mitochondrion, an organelle that appears to have been present in the ancestor of all present-day eukaryotes. Mitochondria harbor proteomes derived from coding information located both inside and outside the organelle, and the rate-limiting step toward the formation of eukaryotic cells may have been development of an import apparatus allowing protein entry to mitochondria. Currently, a widely conserved translocon allows proteins to pass from the cytosol into mitochondria, but how proteins encoded outside of mitochondria were first directed to these organelles at the dawn of eukaryogenesis is not clear.

View Article and Find Full Text PDF

Proteins localized to mitochondria by a carboxyl-terminal tail anchor (TA) play roles in apoptosis, mitochondrial dynamics, and mitochondrial protein import. To reveal characteristics of TAs that may be important for mitochondrial targeting, we focused our attention upon the TA of the Saccharomyces cerevisiae Fis1 protein. Specifically, we generated a library of Fis1p TA variants fused to the Gal4 transcription factor, then, using next-generation sequencing, revealed which Fis1p TA mutations inhibited membrane insertion and allowed Gal4p activity in the nucleus.

View Article and Find Full Text PDF