Obligate intracellular protozoan parasite, Leishmania donovani, causative agent of visceral leishmaniasis, led to impaired macrophage functions. It is well documented that many of these changes were induced by parasite-mediated reduction in macrophage cholesterol content. Leishmania-mediated alteration in the other lipids has not been explored in detail yet.
View Article and Find Full Text PDFCholesterol reduction by intracellular protozoan parasite Leishmania donovani (L. donovani), causative agent of leishmaniasis, impairs antigen presentation, pro-inflammatory cytokine secretion and host-protective membrane-receptor signaling in macrophages. Here, we studied the miRNA mediated regulation of cholesterol biosynthetic genes to understand the possible mechanism of L.
View Article and Find Full Text PDFThe protozoa Leishmania donovani causes visceral leishmaniasis (kala-azar), the third most common vector-borne disease. The visceral organs, particularly the spleen, liver, and bone marrow, are affected by the disease. The lack of effective treatment regimens makes curing and eradicating the disease difficult.
View Article and Find Full Text PDFLeishmaniasis is considered a tropical neglected disease, which is caused by an intramacrophagic parasite, Leishmania. It is endemic in 89 different countries. Autophagy-related protein 8 (Ldatg8) is responsible for the transformation of parasites from promastigote to amastigote differentiation.
View Article and Find Full Text PDFBackground: Visceral leishmaniasis (VL), caused by the protozoan parasite (), is the most severe form of leishmaniasis. It is largely responsible for significant morbidity and mortality in tropical and subtropical countries. Currently, available therapeutics have lots of limitations including high-cost, adverse side-effects, painful route of administration, less efficacy, and resistance.
View Article and Find Full Text PDFVisceral leishmaniasis (VL) is caused by a protozoan parasite, Leishmania donovani (L. donovani). It affects around 1-2 million people around the world annually.
View Article and Find Full Text PDFLeishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region.
View Article and Find Full Text PDFLeishmaniasis is a vector-borne disease caused by around 20 species of Leishmania. The main clinical forms of leishmaniasis are cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL). VL is caused by Leishmania infantum in Central and South America, Mediterranean Basin, Middle East, and by L.
View Article and Find Full Text PDFLeishmaniasis is a neglected tropical disease caused by the protozoan parasite Leishmania. It is endemic in more than 89 different countries worldwide. Sterol alpha-14 demethylase (LdSDM), a sterol biosynthetic pathway enzyme in Leishmania donovani, plays an essential role in parasite survival and proliferation.
View Article and Find Full Text PDF( is an important medicinal plant, found in Africa, the Middle East, and the Indian subcontinent. Every part of the plant possesses a wide array of biologically active and therapeutically important compounds. We reported the antileishmanial activity of bark methanolic extract through antileishmanial assays and dissected the mechanism of its action through studies.
View Article and Find Full Text PDFHesperidin, a naturally occurring flavanoid, is present in citrus family of fruits. It was found effective against an array of pathogens including fungi, bacteria, viruses, and protozoa. Here, we evaluated its antileishmanial activity and possible mechanism of action through different and experiments.
View Article and Find Full Text PDFhas a wide array of biologically active and therapeutically important class of compounds. important drug targets, sterol 24-c methyltransferase (SMT), trypanothione reductase (TR), pteridine reductase (PTR1), and nucleoside hydrolase (NH), were modelled, and molecular docking was performed against the abundant phytochemicals of its leaf extract. Molecular docking results provided the significant prima facie evidence of the leaf extract to have antileishmanial potential.
View Article and Find Full Text PDFBackground And Aim: COVID-19 emerged by the end of 2019 in Wuhan, China. It spreaded and became a public health emergency all over the world by mid of April 2020. Flavonoids are specialized metabolites that have antimicrobial properties including anti-viral activity.
View Article and Find Full Text PDFCynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.
View Article and Find Full Text PDFcauses cutaneous leishmaniasis. An antileishmanial vaccine for humans is unavailable. In this study, we report development of two attenuated strains-5ASKH-HP and LV39-HP-by continuous culture (high passage) of the corresponding virulent strains (low passage).
View Article and Find Full Text PDFTo study the effect of insertion of azobenzene moiety on the spectral, morphological and fluorescence properties of conventional conducting polymers, the present work reports ultrasound-assisted polymerization of azobenzene with aniline, 1-naphthylamine, luminol and o-phenylenediamine. The chemical structure and polymerization was established via Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (H-NMR) spectroscopy, while the electronic properties were explored via ultraviolet-visible (UV-vis) spectroscopy. Theoretical IR and UV spectra were computed using DFT/B3LYP method with 6-311G basis set while theoretical H-NMR spectra was obtained by gauge independent atomic orbital (GIAO) method.
View Article and Find Full Text PDFBackground: Leishmaniasis is caused by a protozoan parasite, Leishmania. It is common in more than 98 countries throughout the world. Due to insufficient availability of antileishmanial chemotherapeutics, it is an urgent need to search for new molecules which have better efficacy, low toxicity and are available at low cost.
View Article and Find Full Text PDFObjective: Enhancement of CS-GA-PCL-NPs (Glycyrrhizic Acid-encapsulated-chitosan-coated-PCL-Nanoparticles) bioavailability in brain.
Methods: Double emulsification solvent evaporation method in order to develop CS-PCL-NPs (Chitosan-coated-PCL-Nanoparticles) followed by characterization of particle size and distribution, zeta potential, encapsulation efficiency and drug release (in vitro). To determine drug-uptake and its pharmacokinetic profile in brain as well as plasma, UHPLC (triple quadrupole Q-trap) MS/MS method was developed and optimized for CS-GA-PCL-NPs as well as to follow-up examined effective role of optimized NPs in reduction of all brain injury parameters after MCAO through the grip strength, locomotor activity, inflammatory cytokines levels, measurement of infarction volume and histopathological changes in neurons with safety/toxicity after i.
The present work deals with the identification and characterization of a novel inhibitor Z220582104, specific to pyruvate phosphate dikinase, for leishmanicidal activities against free promastigotes and intracellular amastigotes. We have used structure-based drug designing approaches and performed homology modelling, virtual screening and molecular dynamics studies. Primary mouse macrophages and macrophage cell line J774A1 were infected with promastigotes of Leishmania donovani.
View Article and Find Full Text PDFHosts and microbes have co-evolved over millions of years. Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated diseases. Although the etiology of IBD remains an enigma, various studies have proposed the involvement of mucosa-associated Escherichia coli (E.
View Article and Find Full Text PDFPLoS Negl Trop Dis
August 2018
Background: Sphingosine-1-phosphate (S1P) is a crucial regulator of a wide array of cellular processes, such as apoptosis, cell proliferation, migration, and differentiation, but its role in Leishmania donovani infection is unknown.
Methodology/ Principal Findings: In the present study, we observed that L. donovani infection in THP-1 derived macrophages (TDM) leads to decrease in the expression of S1pr2 and S1pr3 at mRNA level.
Leishmania is a protozoan parasite that resides and replicates in macrophages and causes leishmaniasis. The parasite alters the signaling cascade in host macrophages and evades the host machinery. Small G-proteins are GTPases, grouped in 5 different families that play a crucial role in the regulation of cell proliferation, cell survival, apoptosis, intracellular trafficking, and transport.
View Article and Find Full Text PDFLeishmania, a protozoan parasite that causes leishmaniasis, affects 1-2 million people every year worldwide. Leishmaniasis is a vector born disease and characterized by a diverse group of clinical syndromes. Current treatment is limited because of drug resistance, high cost, poor safety, and low efficacy.
View Article and Find Full Text PDFThere has been a steady progress in the development of doped conjugated polymers to remarkably improve their photo physical properties for their application as biomarkers. With a view to enhance the spectral, morphological, and photo physical properties of poly(o-phenylenediamine) (POPD), the present work reports the synthesis of poly(o-phenylenediamine) and doping of this polymer using luminol. The formation of luminol-doped POPD was confirmed by infrared and ultraviolet-visible spectroscopies and X-ray diffraction studies.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
October 2017
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment.
View Article and Find Full Text PDF