Publications by authors named "Abdulwahab S Almusallam"

Reconstructing diet is critical to understanding hominin adaptations. Isotopic and functional morphological analyses of early hominins are compatible with consumption of hard foods, such as mechanically-protected seeds, but dental microwear analyses are not. The protective shells surrounding seeds are thought to induce complex enamel surface textures characterized by heavy pitting, but these are absent on the teeth of most early hominins.

View Article and Find Full Text PDF

Mammalian tooth wear research reveals contrasting patterns seemingly linked to diet: irregularly pitted enamel surfaces, possibly from consuming hard seeds, versus roughly aligned linearly grooved surfaces, associated with eating tough leaves. These patterns are important for assigning diet to fossils, including hominins. However, experiments establishing conditions necessary for such damage challenge this paradigm.

View Article and Find Full Text PDF

A mammalian tooth is abraded when a sliding contact between a particle and the tooth surface leads to an immediate loss of tooth tissue. Over time, these contacts can lead to wear serious enough to impair the oral processing of food. Both anatomical and physiological mechanisms have evolved in mammals to try to prevent wear, indicating its evolutionary importance, but it is still an established survival threat.

View Article and Find Full Text PDF

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P.

View Article and Find Full Text PDF

The wear of teeth is a major factor limiting mammalian lifespans in the wild. One method of describing worn surfaces, dental microwear texture analysis, has proved powerful for reconstructing the diets of extinct vertebrates, but has yielded unexpected results in early hominins. In particular, although australopiths exhibit derived craniodental features interpreted as adaptations for eating hard foods, most do not exhibit microwear signals indicative of this diet.

View Article and Find Full Text PDF

Block copolymer-stabilized nanoparticles placed in the presence of a curved oil-water interface are described using Brownian Dynamics simulations. These simulations are targeted towards an exploration of the effect of geometry of the oil-water interface on the adsorption of the stabilized nanoparticle, and this goal is achieved by the systematic variation of the interfacial curvature, while exploring different block copolymer compositions. The contact angle, the order parameter and polymer density across the interface are used to assess the effect of a given block copolymer composition on the adsorption at the liquid-liquid interface.

View Article and Find Full Text PDF

In this paper, by using Brownian Dynamics simulation, we investigate in general terms the behavior of a nanoparticle stabilized by a block copolymer in the presence of an oil-water interface. We investigate the probability of sticking to the interface, the density distribution of the copolymer across the interface and the area occupied by the stabilized nanoparticle at the interface. By using representative snapshots of the stabilized nanoparticle, derived from the density distribution, we find that the nanoparticle stabilized by a block copolymer, with the hydrophobic side of it tethered to the nanoparticle, prefers sitting at the oil-phase, and thus has a contact angle that is tested to be larger than 90 degrees for most of the cases, even if the hydrophobe content is less than 50%.

View Article and Find Full Text PDF

We describe predictions of properties of copolymer-stabilized nanoparticles in the presence of an oil-water interface based on Brownian dynamics simulations. These simulations provide information regarding the equilibrium and diffusion properties of the stabilized particles. The hydrophilic part of the copolymer is modeled as a polyelectrolyte and is described at the Debye-Hückel level.

View Article and Find Full Text PDF

A Brownian dynamics simulation was carried out for a spherical nanoparticle with polymer chains tethered to its surface. These simulations are relevant to understanding the transport properties of polymer-stabilized nanoparticles in environmental and other applications. Hydrodynamic interactions (HI) were taken into account to properly describe the diffusion properties of a stabilized particle.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpr944q4fr6ii4i539sobc7cf57baubb6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once