Environ Sci Pollut Res Int
November 2024
The nanotechnology-driven industrial revolution widely relies on metal oxide-based nanomaterial (NM). Zinc oxide (ZnO) production has rapidly increased globally due to its outstanding physical and chemical properties and versatile applications in industries including cement, rubber, paints, cosmetics, and more. Nevertheless, releasing Zn ions into the environment can profoundly impact living systems and affect water-based ecosystems, including biological ones.
View Article and Find Full Text PDFAs a result of the existence of drug-resistant bacteria and the attendant deficiency of innovative antibiotics, the therapeutic and the clinical sectors are, continually, in search of appropriate multifunctional nanomedicines. Herein, curcumin-chitosan-zinc oxide (CCZ) was successfully synthesized by a one-pot method. Transmission electron micrograph reveals that curcumin and chitosan were layered on a hexagonal ZnO and the particles are sized to ∼48 ±2nm.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2019
Magnesium doped Zinc oxide nanoparticles (Mg:ZnO NPs) were synthesized by co-precipitation method. The synthesized Mg:ZnO NPs exhibited hexagonal wurtzite structure, which was confirmed by X-ray diffraction results. After structural confirmation of Mg doped ZnO NPs, base amino acids like l-Arginine and l-Histidine were separately incorporated with the Mg: ZnO NPs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
April 2018
In the present scenario, the synthesis and characterization of zinc oxide (ZnO) and cerium oxide (CeO) nanoparticles (NPs) through biological routes using green reducing agents are quite interesting to explore various biomedical and pharmaceutical applications, particularly for the treatment of cancer. This study was focused on the phytosynthesis of ZnO and CeO NPs using the leaf extract of Rubia cordifolia L. The active principles present in the plant extract were liable for rapid reduction of Zn and Ce ions to metallic nanocrystals.
View Article and Find Full Text PDFPure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2016
The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C.
View Article and Find Full Text PDFCeO2 nanoparticles (NPs) were green synthesized using Gloriosa superba L. leaf extract. The synthesized nanoparticles retained the cubic structure, which was confirmed by X-ray diffraction studies.
View Article and Find Full Text PDFJ Mater Chem B
November 2013
Pure ZnO and alkaline metal ion (Mg, Ca, Sr and Ba)-doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure, which was confirmed by X-ray diffraction studies. The micro-strain properties were analyzed through Williamson-Hall analysis.
View Article and Find Full Text PDF