Prostate cancer remains a significant health challenge, being the most prevalent non-cutaneous cancer in men worldwide. This review discusses the critical advancements in biomarker discovery using single-omics and multi-omics approaches. Multi-omics, integrating genomic, transcriptomic, proteomic, metabolomic, and epigenomic data, offers a comprehensive understanding of the molecular heterogeneity of prostate cancer, leading to the identification of novel biomarkers and therapeutic targets.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2) is a major driver of disease progression, treatment resistance, and worse survival for patients with various types of cancers, including prostate cancer. However, key bench studies and clinical trials have failed to evaluate the role of HER2 in prostate cancer using racially diverse experimental designs and protocols. This lack of diversity represents what has been the status quo of cancer research in the United States for decades.
View Article and Find Full Text PDFThe Polycomb group protein SCML2 and the transcriptional cofactor YAP1 regulate diverse cellular biology, including stem cell maintenance, developmental processes, and gene regulation in mammals and flies. However, their molecular and functional interactions are unknown. Here, we show that SCML2 interacts with YAP1, as revealed by immunological assays and mass spectroscopy.
View Article and Find Full Text PDFThe EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression.
View Article and Find Full Text PDF