Countermeasures for radiation diagnosis, prognosis, and treatment are trailing behind the proliferation of nuclear energy and weaponry. Radiation injury mechanisms at the systems biology level are not fully understood. Here, mice skin biopsies at h2, d4, d7, d21, and d28 after exposure to 1, 3, 6, or 20 Gy whole-body ionizing radiation were evaluated for the potential application of transcriptional alterations in radiation diagnosis and prognosis.
View Article and Find Full Text PDF, a gram-positive bacterium, causes toxic shock through the production of superantigenic toxins (sAgs) known as Staphylococcal enterotoxins (SE), serotypes A-J (SEA, SEB, etc.), and toxic shock syndrome toxin-1 (TSST-1). The chronology of host transcriptomic events that characterizes the response to the pathogenesis of superantigenic toxicity remains uncertain.
View Article and Find Full Text PDFThe lack of an easy and fast radiation-exposure testing method with a dosimetric ability complicates triage and treatment in response to a nuclear detonation, radioactive material release, or clandestine exposure. The potential of transcriptomics in radiation diagnosis and prognosis were assessed here using wet skin (blood/skin) biopsies obtained at hour 2 and days 4, 7, 21, and 28 from a mouse radiation model. Analysis of significantly differentially transcribed genes (SDTG; ≤ 0.
View Article and Find Full Text PDFCommon treatment for venous leg wounds includes topical wound dressings with compression. At each dressing change, wounds are debrided and washed; however, the effect of the washing procedure on the wound microbiome has not been studied. We hypothesized that wound washing may alter the wound microbiome.
View Article and Find Full Text PDFAs the field of metabolomics develops further, investigations of how the metabolome is affected following thermal injury may be helpful to inform diagnostics and guide treatments. In this study, changes to the metabolome were tested and validated in a murine burn injury model. After a 30% total body surface scald injury or sham procedure sera and skin biopsies were collected at 1, 2, 6, or 24 hr.
View Article and Find Full Text PDFUpon healing, burn wounds often leave hypertrophic scars (HTSs) marked by excess collagen deposition, dermal and epidermal thickening, hypervascularity, and an increased density of fibroblasts. The Galectins, a family of lectins with a conserved carbohydrate recognition domain, function intracellularly and extracellularly to mediate a multitude of biological processes including inflammatory responses, angiogenesis, cell migration and differentiation, and cell-ECM adhesion. Galectin-1 (Gal-1) has been associated with several fibrotic diseases and can induce keratinocyte and fibroblast proliferation, migration, and differentiation into fibroproliferative myofibroblasts.
View Article and Find Full Text PDFIn the event of a mass casualty radiation scenario, rapid assessment of patients' health and triage is required for optimal resource utilization. Identifying the level and extent of exposure as well as prioritization of care is extremely challenging under such disaster conditions. Blood-based biomarkers, such as RNA integrity numbers (RIN), could help healthcare personnel quickly and efficiently determine the extent and effect of multiple injuries on patients' health.
View Article and Find Full Text PDFHidradenitis suppurativa is a chronic inflammatory skin disease, with significant morbidity secondary to its recurrent painful and exudative lesions. Given limited research on the cytoarchitecture of hidradenitis suppurativa, this study describes the microscopic structure and cell surface markers present in hidradenitis suppurativa tissue to better understand the disease and identify potential therapeutic targets. Skin biopsies of hidradenitis suppurativa lesions from patients who underwent surgical excision (n = 11) were compared with grossly normal-appearing perilesional skin (n = 5) and normal skin biopsies from unaffected individuals (n = 4).
View Article and Find Full Text PDFBackground: Reactive oxygen species (ROS) can damage macromolecules if not appropriately neutralized by ROS scavengers. The balance between ROS and ROS scavengers is essential to prevent the accumulation of damage in healthy tissues. This balance is perturbed in hypertrophic scar (HTS).
View Article and Find Full Text PDFAlthough pigment synthesis is well understood, relevant mechanisms of psychologically debilitating dyspigmentation in nascent tissue after cutaneous injuries are still unknown. Here, differences in genomic transcription of hyper- and hypopigmented tissue relative to uninjured skin were investigated using a red Duroc swine scar model. Transcription profiles differed based on pigmentation phenotypes with a trend of more upregulation or downregulation in hyper- or hypopigmented scars, respectively.
View Article and Find Full Text PDFIntroduction: The value of compression studies and applications in hypertrophic scar (HTS) treatment is often undermined due to the lack of ideal controls, patient compliance, and clear action mechanisms.
Objective: This study assesses the genome-wide compression effects on scars under well-controlled conditions.
Materials And Methods: An automated pressure delivery system (APDS) applied controlled doses of pressure to scars in a red Duroc swine HTS model.
Hypertrophic scar (HTS) occurs frequently after burn injury. Treatments for some aspects of scar morbidity exist, however, dyspigmentation treatments are lacking due to limited knowledge about why scars display dyschromic phenotypes. Full thickness wounds were created on duroc pigs that healed to form dyschromic HTS.
View Article and Find Full Text PDFObjectives: The aims of this study were to assess the effectiveness of a hypochlorous acid-based wound cleanser (Vashe Wound Solution [VWS], SteadMed Medical, Fort Worth, Texas) in disrupting methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms relative to other cleansers using an in vitro collagen biofilm model and to evaluate cleansers' cytotoxicity. The bioburden reduction of venous stasis wounds by VWS and another cleanser was evaluated.
Methods: Plates coated with collagen films incubated with active bacteria cultures to yield biofilm mimics were treated with VWS, 1% and 10% povidone-iodine (PI), 0.
Beneficial effects of pressure therapy for hypertrophic scars have been reported, but the mechanisms of action are not fully understood. This study evaluated elastin and its contribution to scar pliability. The relationship between changes in Vancouver Scar Scale (VSS) scores of pressure-treated scars and differential regulation of elastin was assessed.
View Article and Find Full Text PDFBackground: The effects of pressure on hypertrophic scar are poorly understood. Decreased extracellular matrix deposition is hypothesized to contribute to changes observed after pressure therapy. To examine this further, collagen composition was analyzed in a model of pressure therapy in hypertrophic scar.
View Article and Find Full Text PDFThe ability to phenotype wounds for the purposes of assessing severity, healing potential and treatment is an important function of evidence-based medicine. A variety of optical technologies are currently in development for noninvasive wound assessment. To varying extents, these optical technologies have the potential to supplement traditional clinical wound evaluation and research, by providing detailed information regarding skin components imperceptible to visual inspection.
View Article and Find Full Text PDFErythrocytes infected with malaria parasites have increased permeability to ions and various nutrient solutes, mediated by a parasite ion channel known as the plasmodial surface anion channel (PSAC). The parasite clag3 gene family encodes PSAC activity, but there may also be additional unidentified components of this channel. Consistent with a lack of clag3 homology to genes of other ion channels, PSAC has a number of unusual functional properties.
View Article and Find Full Text PDFMonkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking.
View Article and Find Full Text PDFThe Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available.
View Article and Find Full Text PDFRickettsia typhi, an obligate intracellular bacterium that causes murine typhus, possesses a heavily methylated outer membrane protein B (OmpB) antigen. This immunodominant antigen is responsible for serological reactions and is capable of eliciting protective immune responses with a guinea pig model. Western blot analysis of partially digested OmpB with patient sera revealed that most of the reactive fragments are larger than 20 kDa.
View Article and Find Full Text PDFThe altered permeability characteristics of erythrocytes infected with malaria parasites have been a source of interest for over 30 years. Recent electrophysiological studies have provided strong evidence that these changes reflect transmembrane transport through ion channels in the host erythrocyte plasma membrane. However, conflicting results and differing interpretations of the data have led to confusion in this field.
View Article and Find Full Text PDFHuman erythrocytes infected with Plasmodium falciparum have markedly increased permeability to diverse solutes, many of which may be mediated by an unusual small conductance ion channel, the plasmodial surface anion channel (PSAC). Because these increases may be essential for parasite survival in the bloodstream, an important question is whether other intraerythrocytic parasites induce similar ion channels. Here, we examined this question using human erythrocytes infected with Babesia divergens, a distantly related apicomplexan parasite that can cause severe disease in immunocompromised humans.
View Article and Find Full Text PDFThe plasmodial surface anion channel (PSAC) is an unusual ion channel induced on the human red blood cell membrane after infection with the malaria parasite, Plasmodium falciparum. Because PSAC is permeant to small metabolic precursors essential for parasite growth and is present on red blood cells infected with geographically divergent parasite isolates, it may be an ideal target for future antimalarial development. Here, we used chemically induced mutagenesis and known PSAC antagonists that inhibit in vitro parasite growth to examine whether resistance mutations in PSAC can be readily induced.
View Article and Find Full Text PDF