Publications by authors named "Abdulmohsen Algarni"

Background: Type 2 diabetes mellitus (T2DM) is a global health problem characterized by insulin resistance and hyperglycemia. Early detection and accurate prediction of T2DM is crucial for effective management and prevention. This study explores the integration of machine learning (ML) and explainable artificial intelligence (XAI) approaches based on metabolomics panel data to identify biomarkers and develop predictive models for T2DM.

View Article and Find Full Text PDF

Distributed agile software development (DASD) has become a prominent software development approach. Proper task allocation is crucial in DASD to avoid undesirable outcomes including project rejection by clients, unfavorable team attitudes, and project failure. Coordination and communication issues occur as businesses embrace the DASD environment more frequently to tap into global talent and knowledge while cutting development expenses.

View Article and Find Full Text PDF

This study aims to assess the efficacy of combining automated machine learning (AutoML) and explainable artificial intelligence (XAI) in identifying metabolomic biomarkers that can differentiate between hepatocellular carcinoma (HCC) and liver cirrhosis in patients with hepatitis C virus (HCV) infection. We investigated publicly accessible data encompassing HCC patients and cirrhotic controls. The TPOT tool, which is an AutoML tool, was used to optimize the preparation of features and data, as well as to select the most suitable machine learning model.

View Article and Find Full Text PDF

: Sepsis is characterized by an atypical immune response to infection and is a dangerous health problem leading to significant mortality. Current diagnostic methods exhibit insufficient sensitivity and specificity and require the discovery of precise biomarkers for the early diagnosis and treatment of sepsis. Platelets, known for their hemostatic abilities, also play an important role in immunological responses.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus, and early detection is crucial for effective management. Metabolomics profiling has emerged as a promising approach for identifying potential biomarkers associated with DR progression. This study aimed to develop a hybrid explainable artificial intelligence (XAI) model for targeted metabolomics analysis of patients with DR, utilizing a focused approach to identify specific metabolites exhibiting varying concentrations among individuals without DR (NDR), those with non-proliferative DR (NPDR), and individuals with proliferative DR (PDR) who have type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Acute Myocardial Infarction (AMI), a common disease that can have serious consequences, occurs when myocardial blood flow stops due to occlusion of the coronary artery. Early and accurate prediction of AMI is critical for rapid prognosis and improved patient outcomes. Metabolomics, the study of small molecules within biological systems, is an effective tool used to discover biomarkers associated with many diseases.

View Article and Find Full Text PDF

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities.

View Article and Find Full Text PDF

Background: Most infectious diseases are caused by viruses, fungi, bacteria and parasites. Their ability to easily infect humans and trigger large-scale epidemics makes them a public health concern. Methods for early detection of these diseases have been developed; however, they are hindered by the absence of a unified, interoperable and reusable model.

View Article and Find Full Text PDF

The intricate and multifaceted nature of diabetes disrupts the body's crucial glucose processing mechanism, which serves as a fundamental energy source for the cells. This research aims to predict the occurrence of diabetes in individuals by harnessing the power of machine learning algorithms, utilizing the PIMA diabetes dataset. The selected algorithms employed in this study encompass Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, and Support Vector Machine.

View Article and Find Full Text PDF

Medical education is one of the most sought-after disciplines for its prestigious and noble status. Institutions endeavor to identify admissions criteria to register bright students who can handle the complexity of medical training and become competent clinicians. This study aims to apply statistical and educational data mining approaches to study the relationship between pre-admission criteria and student performance in medical programs at a public university in Saudi Arabia.

View Article and Find Full Text PDF

Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions.

View Article and Find Full Text PDF