Publications by authors named "Abdulmelik Aras"

Resinous beehive product propolis has many biological activities. It contains various aromatic substances that have great differences in their chemical composition depending on the natural flora. Thus, chemical characterization and biological properties of propolis samples is an important subject for the pharmaceutical industry.

View Article and Find Full Text PDF

In this study, a series of novel Schiff bases (4a-4h) containing 1,2,4-triazole structure were synthesized through a condensation reaction of 3-alkyl(aryl)-4-amino-4,5-dihydro-1-1,2,4-triazol-5-ones with 3-(4-methylbenzenesulfonyloxy)-benzaldehyde. The structures of 3-alkyl(aryl)-4-[3-(4-methylsulfonyloxy)-benzylidenamino]-4,5-dihydro-1-1,2,4-triazol-5-ones (4a-h) were determined through a range of spectroscopic techniques (FT-IR, H NMR, C NMR, and elemental analysis). In addition, enzyme inhibitory properties of the newly synthesized Schiff bases were determined against acetylcholinesterase (AChE).

View Article and Find Full Text PDF

Schiff bases are well-known compounds for having significant biological properties. In this study, a new Schiff base ligand and its metal complexes were synthesized, and their antioxidant and enzyme inhibitory activities were evaluated. The new Schiff base ligand was synthesized with the condensation reaction of 6-tert-butyl 3-ethyl 2-amino-4,5-dihydrothieno[2,3-c]pyridine-3,6(7H)-dicarboxylate and 2-hydroxybenzaldehyde compounds.

View Article and Find Full Text PDF

In the present study, 3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (S1-8) were synthesized by treating 4-hydroxybenzaldehyde (B) with eight different 3-substitued-4-amino-4,5-dihydro-1H-1,2,4-triazole-5-ones (T1-8) in acetic acid medium, separately. The synthesized Schiff bases (S) were reacted with formaldehyde and secondary amine such as 4-piperidinecarboxyamide to afford novel heterocyclic bases. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (T) were treated with 4-piperidinecarboxyamide in the presence of formaldehyde to synthesize eight new 1-(4-piperidinecarboxyamide-1-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (M1-8).

View Article and Find Full Text PDF

Many plant species have a large diversity of secondary metabolites with different biological activities. This study aims to assess the phenolic constituent, enzyme inhibitory and antioxidant activities of the aqueous (water) and methanol extracts of Inula discoidea. The enzyme assays showed effective enzyme inhibition of the methanol extract against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glutathione S-transferase (GST), and α-glycosidase (α-Gly) enzymes.

View Article and Find Full Text PDF

A series of Fe(II), Ni(II), and Pd(II) complexes were prepared with a novel Schiff base ligand containing pyridine moiety. The prepared compounds were characterized using FT-IR, H and  C NMR, UV-Vis, powder XRD, thermogravimetric analysis, mass spectra, magnetic susceptibility, and elemental analysis. The coordination geometry of Fe(II) and Ni(II) complexes were octahedral, where Fe(II) and Ni(II) metal ions were coordinated by an oxygen atom of the carbonyl group, a nitrogen atom of the azomethine moiety, and a phenolic oxygen atom.

View Article and Find Full Text PDF

In this study, new 1,2,3-triazole derivatives containing chalcone core (1-7) were synthesized. Obtained compounds were characterized by IR, H NMR, C NMR, and mass studies. Characterized compounds (1-7) inhibitory effects were tested against the glutathione S-transferase (GST), acetylcholinesterase (AChE), and Butyrylcholinesterase (BChE).

View Article and Find Full Text PDF

The synthesized Schiff Bases were reacted with formaldehyde and secondary amine such as 2,6-dimethylmorpholine to afford N-Mannich bases through the Mannich reaction. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4) were treated with 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize eight new 1-(2,6-dimethylmorpholino-4-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h). The structures of the synthesized eight new compounds were characterized using IR, H NMR, C NMR, and HR-MS spectroscopic methods.

View Article and Find Full Text PDF

The compounds (-) used in this study were re-synthesized in accordance with our previous study. The inhibitory effect of the complexes on some metabolic enzymes was examined and it was demonstrated that the enzymes inhibited by ligands and their complex molecules at micromolar level. The best Ki value for α-glycosidase enzyme was absorved 1.

View Article and Find Full Text PDF

The Schiff base ligand (()-6-methyl-2-(2,3,4-trimethoxybenzylideneamino)-4,5,6,7-tetrahydrobenzo[]thiophene-3-carbonitrile) and its cobalt(II) and palladium(II) complexes were successfully prepared. The structure of the compounds was elucidated by various techniques (NMR, FT-IR, powder X-ray diffraction, microanalysis, TGA, magnetic susceptibility, mass spectrometry). The Pd(II) complex showed a square planar geometry and the Co(II) complex had an octahedral geometry.

View Article and Find Full Text PDF

Inhibitory effect of the complexes on some metabolic enzyme demonstrated that the enzymes inhibited by ligand and it's complex molecules at the micromolar level. The best inhibition effect for α-glycosidase (α-Gly) enzyme against cobalt complex with Ki value of 3.77 ± 0.

View Article and Find Full Text PDF

Phenolic content and antioxidant activity of Boiss. var. () were reported in this study.

View Article and Find Full Text PDF

Achillea schischkinii Sosn. is an endemic plant species and it belongs to Asteraceae family. It is distributed widely in the Central and East Anatolia.

View Article and Find Full Text PDF

The aim of this work was to investigate the enzyme inhibition, antioxidant activity, and phenolic compounds of Lecokia cretica (Lam.) DC. Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase enzymes were strongly inhibited by the L.

View Article and Find Full Text PDF

Many taxa of Salvia genus have been used in herbal beverages, food flavoring, cosmetics, and pharmaceutical industry. In this paper, chemical compounds of Salvia eriophora (S. eriophora) leaves were determined by LC-MS/MS (Liquid Chromatography tandem Mass Spectrometry).

View Article and Find Full Text PDF

The new complex compounds [RuLCl(p-cymene)] ⋅ 3H O and [NiL (H O) ] ⋅ 3H O (L: 1-{4-[(2-hydroxy-3-methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT-IR, H- and C-NMR, mass spectroscopy, TGA, elemental analysis, X-ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes.

View Article and Find Full Text PDF

Antioxidant properties of subsp solvent extracts were measured by both cupric ion reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP) methods. According to the results, ethanol extract of the plant has high potential of reducing antioxidant activity on CUPRAC method. However, water extract of the plant has lower antioxidant potential.

View Article and Find Full Text PDF

Continuing our work on the sources of natural bioactive compounds, we evaluated the antimicrobial and antioxidant activities of as well as its major phenolic content using the high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) technique. For antioxidant activity, ferric reducing antioxidant power (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) methods were performed to measure the reducing power and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was employed to evaluate the radical scavenging activity of the sample. For antimicrobial activity, three Gram-positive and four Gram-negative microbial species as well as three fungi species were tested.

View Article and Find Full Text PDF