Micromachines (Basel)
November 2024
This study investigates the movements of particles in an accelerated toroidal flow channel filled with water, with specific applications for a particle imaging velocimetry gyroscope (PIVG). We used computational fluid dynamics (CFD) to simulate particle behavior under different angular accelerations. These angular accelerations were 4 rad/s, 6 rad/s, and 8 rad/s for particles densities of 1100 kg/m, 1050 kg/m, and 980 kg/m.
View Article and Find Full Text PDFAdv Colloid Interface Sci
July 2024
Thermo-osmosis driven by temperature gradients generally requires two liquid reservoirs at different temperatures connected by porous bodies or capillaries. We demonstrate, by molecular dynamics simulation, a new phenomenon toward nanoscale thermo-osmosis. Upon heating at a certain region of a nanochannel, multiple nanoscale convective layers are formed and can be manipulated to generate a net fluid transport from one reservoir to another, even without a temperature difference between them.
View Article and Find Full Text PDFDroplet microfluidics has provided lab-on-a-chip platforms with the capability of bacteria encapsulation in biomaterials, controlled culture environments, and live monitoring of growth and proliferation. The droplets are mainly generated from biomaterials with temperature dependent gelation behavior which necessitates stable and size-controlled droplet formation within microfluidics. Here, the biomaterial is agar hydrogel with a non-Newtonian response at operating temperatures below 40 °C, the upper-temperature threshold for cells and pathogens.
View Article and Find Full Text PDFMultiple Emulsions (MEs) contain a drop laden with many micro-droplets. A single-step microfluidic-based synthesis process of MEs is presented to provide a rapid and controlled generation of monodisperse MEs. The design relies on the interaction of three immiscible fluids with each other in subsequent droplet formation steps to generate monodisperse ME constructs.
View Article and Find Full Text PDFMicroinjection is an effective actuation technique used for precise delivery of molecules and cells into droplets or controlled delivery of genes, molecules, proteins, and viruses into single cells. Several microinjection techniques have been developed for actuating droplets and cells. However, they are still time-consuming, have shown limited success, and are not compatible with the needs of high-throughput (HT) serial microinjection.
View Article and Find Full Text PDFCharacterizing the thermal behavior of dispersed droplets within microfluidic channels is crucial for different applications in lab-on-a-chip. In this paper, the physics of droplets volume during their transport over a heater is studied experimentally and numerically. The response of droplets to external heating is examined at temperature ranges of 25-90 °C and at different flow rates of the dispersed phase respect to the continuous flow.
View Article and Find Full Text PDF