The frequent use of an industrial dye such as malachite green (MG) has caused major water body deterioration and is one of the most pressing global challenges, demanding effective treatment techniques. To solve these issues, a simplistic method was developed to synthesize zinc-tungstate (ZnWO) nanoparticles and also dope the surface matrix of the ZnWO nanoparticles using nonmetals of boron (B), carbon (C), and nitrogen (N) at different ratios for enhanced MG removal from wastewater. The prepared nanomaterials were characterized by different methods for crystal structure composition, surface properties, surface morphology, microstructures, functional groups, and elemental oxidation states.
View Article and Find Full Text PDFHeavy metals (HMs) are ubiquitous; they are found in soil, water, air, and all biological matrices. The toxicity, bioaccumulation potential, and deleterious effects of most of these metals on humans and the environment have been widely documented. Consequently, the detection and quantification of HMs in various environmental samples have become a pressing issue.
View Article and Find Full Text PDFThe monoclinic wolframite-phase structure of ZnWO materials has been frequently synthesised, characterised, and applied in optical fibres, environmental decontamination, electrochemistry, photonics, catalysis, and not limited to magnetic applications. However, the problems of crystal growth conditions and mechanisms, growth, the crystal quality, stability, and the role of synthesis parameters of ZnWO nanoparticles remain a challenge limiting its commercial applications. This review presents recent advances of ZnWO as an advanced multi-functional material for Industrial wastewater treatment.
View Article and Find Full Text PDFAfr J Tradit Complement Altern Med
May 2012
Four medicinal plants Acacia nilotica, Bombax buonopozense, Terminalia avicennioides and Zanthoxylum zanthoxyloides traditionally used for treatment of sleeping sickness in Nupeland were investigated for in vivo antitrypanosomal activity. Methanol extracts of different parts of each plant (stem barks and fruits) were obtained and evaluated for their in vivo antitrypanosomal activities against Trypanosoma brucei brucei. Phytochemical screening of the methanol extracts of each plant were performed by standard procedures.
View Article and Find Full Text PDF