Bladder cancer (BCa) is a heterogeneous malignancy characterized by distinct immune subtypes, primarily due to differences in tumor-infiltrating immune cells and their functional characteristics. Therefore, understanding the tumor immune microenvironment (TIME) landscape in BCa is crucial for prognostic prediction and guiding precision therapy. In this study, we integrated 10 machine learning algorithms to develop an immune-related machine learning signature (IRMLS) and subsequently created a deep learning model to detect the IRMLS subtype based on pathological images.
View Article and Find Full Text PDFBackground: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, severely distressing clinical syndrome characterized by bladder pain and pressure perceptions. The origin and pathophysiology of IC/BPS are currently unclear, making it difficult to diagnose and formulate successful treatments. Our study is aimed at investigating the role of immune-related genes in the diagnosis, progression, and therapy of IC/BPS.
View Article and Find Full Text PDF