Disease interactions between farmed and wild populations have been poorly documented for most aquaculture species, in part due to the complexities to study this. Here, we tested 567 farmed Atlantic salmon escapees, captured in a Norwegian river during 2014-2018, for five viral infections that are prevalent in global salmonid aquaculture. Over 90% of the escapees were infected with one or more viruses.
View Article and Find Full Text PDFViral diseases are a serious problem in Atlantic salmon (Salmo salar L.) farming in Norway, often leading to reduced fish welfare and increased mortality. Disease outbreaks in salmon farms may lead to spread of viruses to the surrounding environment.
View Article and Find Full Text PDFUnderstanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host.
View Article and Find Full Text PDFEmamectin benzoate (EB) is a prophylactic pharmaceutical used to protect Atlantic salmon (Salmo salar) smolts migrating out of rivers and into the ocean against sea lice parasites. Randomized control trials comparing the marine survival of smolts treated with EB to a control group is used to calculate the fraction of marine mortality attributable to sea lice parasitism. However, it is assumed that there is no baseline difference in survival induced by the application of EB treatment.
View Article and Find Full Text PDFContaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA).
View Article and Find Full Text PDFViral diseases represent a serious problem in Atlantic salmon (Salmo salar L.) farming in Norway. Pancreas disease (PD) caused by salmonid alphavirus (SAV) and heart and skeletal muscle inflammation (HSMI) caused by piscine orthoreovirus (PRV) are among the most frequently diagnosed viral diseases in recent years.
View Article and Find Full Text PDFBackground: Spontaneous triploidy has been reported in a number of fish species, and is often linked with in vivo or in vitro ageing of eggs post ovulation. Here, we provide the first investigation into the frequency of spontaneous triploidy in farmed Atlantic salmon by analysing more than 4000 fish from 55 farms, and approximately 1000 recaptured escapees, all sampled in the period 2007-2014. In addition, we compare microsatellite genotyping against flow cytometry and red blood cell diameter in a set of 45 putatively diploid and 45 putatively triploid Atlantic salmon.
View Article and Find Full Text PDFRapid production of influenza vaccine antigen is an important challenge when a new pandemic occurs. Production of recombinant antigens in plants is a quick, cost effective and up scalable new strategy for influenza vaccine production. In this study, we have characterized a recombinant influenza haemagglutinin antigen (HAC1) that was derived from the 2009 pandemic H1N1 (pdmH1N1) virus and expressed in tobacco plants.
View Article and Find Full Text PDFBackground: Vaccination is the best measure to protect the population against a potential influenza H5N1 pandemic, but 2 doses of vaccine are needed to elicit protective immune responses. An immunological marker for H5N1 vaccine effectiveness is needed for early identification of the best vaccine candidate.
Methods: We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with Matrix M.
The avian influenza H5 virus epizootic continues to cause zoonosis with human fatalities, highlighting the continued need for pandemic preparedness against this subtype. This study evaluated the tolerability and immunogenicity of a Matrix M™ adjuvanted virosomal H5N1 vaccine in a phase I clinical trial. Sixty healthy adults were vaccinated intramuscularly with two doses of influenza H5N1 (NIBRG-14) virosomal vaccine alone (30 μg haemagglutinin (HA)) or 1.
View Article and Find Full Text PDFBackground: Development of influenza vaccines that induce mucosal immunity has been highlighted by the World Health Organisation as a priority (Vaccine 2005;23:1529). Dose-sparing strategies and an efficient mass-vaccination regime will be paramount to reduce the morbidity and mortality of a future H5N1 pandemic.
Objectives: This study has investigated the immune response and the dose-sparing potential of a chitosan-adjuvanted intranasal H5N1 (RG-14) subunit (SU) vaccine in a mouse model.
Influenza Other Respir Viruses
November 2011
Background: A candidate pandemic influenza H5N1 vaccine should provide rapid and long-lasting immunity against antigenically drifted viruses. As H5N1 viruses are poorly immunogenic, this may require a combination of immune potentiating strategies. An attractive approach is combining the intrinsic immunogenicity of virosomes with another promising adjuvant to further boost the immune response.
View Article and Find Full Text PDFVaccination is the best available measure of limiting the impact of the next influenza pandemic. Ideally, a candidate pandemic influenza vaccine should be easy to administer and should elicit strong mucosal and systemic immune responses. Production of influenza subunit antigen in transient plant expression systems is an alternative to overcome the bottleneck in vaccine supply during influenza pandemic.
View Article and Find Full Text PDFMass vaccination was the most effective prophylaxis for protecting the population during the influenza H1N1 pandemic. We have evaluated the tolerability, immunogenicity and kinetics of the antibody response to a monovalent oil-in-water (AS03) adjuvanted human pandemic split influenza A/California/7/2009 H1N1 (3.75 μg haemagglutinin) vaccine in health care workers.
View Article and Find Full Text PDFRecent years' enzootic spread of highly pathogenic H5N1 virus among poultry and the many lethal zoonoses in its wake has stimulated basic and applied pandemic vaccine research. The quest for an efficacious, affordable and timely accessible pandemic vaccine has been high on the agenda. When a variant H1N1 strain of swine origin emerged as a pandemic virus, it surprised many, as this subtype is well-known to man as a seasonal virus.
View Article and Find Full Text PDFIdeally, a candidate pandemic influenza vaccine should elicit rapid and strong cell-mediated and humoral immune responses, which are long-lasting and exhibit broad cross-reactivity against drifted strains. The present study investigated the detailed humoral and cellular immune responses in mice vaccinated intranasally or intramuscularly with inactivated influenza H5N1 (NIBRG-14) virosomal vaccine alone or formulated with Matrix-M adjuvant. The intramuscular Matrix-M-adjuvanted vaccine induced a strong immediate and long-term humoral immune response with high cross-reactivity against drifted H5N1 viruses and showed a dose-sparing potential.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
May 2009
Background: In recent years, several avian influenza subtypes (H5, H7 and H9) have transmitted directly from birds to man, posing a pandemic threat.
Objectives: We have investigated the immunogenicity and protective efficacy of a cell based candidate pandemic influenza H7 vaccine in pre-clinical animal models.
Methods: Mice and ferrets were immunised with two doses of the split virus vaccine (12-24 microg haemagglutinin) with or without aluminium hydroxide adjuvant and challenged 3 weeks after second dose with the highly pathogenic A/chicken/Italy/13474/99 (H7N1) virus.
Avian influenza H7 viruses have transmitted from poultry to man causing human illness and fatality, highlighting the need for pandemic preparedness against this subtype. We have developed and tested the first cell-based human vaccine against H7 avian influenza virus in a phase I clinical trial. Sixty healthy volunteers were intramuscularly vaccinated with two doses of split H7N1 virus vaccine containing 12 microg or 24 microg haemagglutinin alone or with aluminium hydroxide adjuvant (300 microg or 600 microg, respectively).
View Article and Find Full Text PDFThe threat of a new influenza pandemic has led to renewed interest in dose-sparing vaccination strategies such as intradermal immunization and the use of adjuvanted vaccines. In this study we compared the quality and kinetics of the serum antibody response elicited in mice after one or two immunizations with a split influenza A (H3N2) virus, using three different low-dose vaccination strategies. The mice were divided into four groups, receiving either a low-dose vaccine (3 microg hemagglutinin [HA]) intradermally or intramuscularly with or without aluminum adjuvant or the normal human vaccine dose (15 microg HA) intramuscularly.
View Article and Find Full Text PDFStudies of the immune response after influenza vaccination in man, with focus on the immune activity occurring locally at mucosal surfaces and in associated lymphoid tissue, provide a valuable insight into immunity to influenza. The aim of influenza vaccination is to develop immunological memory resulting in enhanced rapid specific response upon subsequent influenza encounter. The tonsils are thought to play an important role as an activating, effector and memory site for immune responses against influenza.
View Article and Find Full Text PDFRecently the urgency of developing a pandemic influenza vaccine has lead to the re-evaluation of the use of whole virus vaccine. We have compared the humoral immune response and the protective efficacy of whole and split influenza virus vaccines in mice. Whole virus vaccine was more immunogenic particularly after the first dose of vaccine, generally eliciting higher numbers of systemic antibody secreting cells and an earlier and higher neutralising antibody response.
View Article and Find Full Text PDF