Publications by authors named "Abdullah Isreb"

A novel subtractive manufacturing method to produce bespoke tablets with immediate and extended drug release is presented. This is the first report on applying fusion laser cutting to produce bespoke furosemide solid dosage forms based on pharmaceutical-grade polymeric carriers. Cylindric tablets of different sizes were produced by controlling the two-dimensional design of circles of the corresponding diameter.

View Article and Find Full Text PDF

Fused deposition modelling (FDM) is one of the most researched 3D printing technologies that holds great potential for low-cost manufacturing of personalised medicine. To achieve real-time release, timely quality control is a major challenge for applying 3D printing technologies as a point-of-care (PoC) manufacturing approach. This work proposes the use of a low-cost and compact near-infrared (NIR) spectroscopy modality as a process analytical technology (PAT) to monitor a critical quality attribute (drug content) during and after FDM 3D printing process.

View Article and Find Full Text PDF

Hydrocortisone (HC) is the preferred drug in children with congenital adrenal hyperplasia due to its lower potency as well as fewer reports of side effects. Fused deposition modelling (FDM) 3D printing holds the potential to produce low-cost personalised doses for children at the point of care. However, the compatibility of the thermal process to produce immediate-release bespoke tablets for this thermally labile active is yet to be established.

View Article and Find Full Text PDF

3D printing (3DP) has been proposed as a novel approach for personalising dosage forms for children and young people (CYP). Owing to its low cost and the lack of need for finishing steps, fused deposing modelling (FDM) 3DP has been heavily researched in solid dosage forms (SDFs) manufacturing. However, the swallowability and overall acceptability of 3D printed dosage forms are yet to be established.

View Article and Find Full Text PDF

Several nutraceutical products require gastric protection against the hostile environment in the stomach. Currently marketed synthetic and semi-synthetic coatings suffer from major shortcomings such as poor gastric protection, slow-release response to pH change, and the use of artificial ingredients. The challenge of coating natural products is further exacerbated by the relatively high gastric pH in the fed state.

View Article and Find Full Text PDF

Aqueous-based film coating suspensions are associated with reliance on alkalinising reagents and poor film formation. The impact of particle size in this process and resultant film properties remains unclear. This study offers the first direct comparison of film formation properties between aqueous micro- and nano-suspensions of the enteric polymer Eudragit S100.

View Article and Find Full Text PDF

3D printing of oral solid dosage forms is a recently introduced approach for dose personalisation. Fused deposition modelling (FDM) is one of the promising and heavily researched 3D printing techniques in the pharmaceutical field. However, the successful application of this technique relies greatly on the mass manufacturing of physically and chemically stable filaments, that can be readily available as a shelf item to be 3D printed on-demand.

View Article and Find Full Text PDF

In an era moving towards digital health, 3D printing has successfully proven its applicability in providing personalised medicine through a technology-based approach. Among the different 3D printing techniques, direct extrusion 3D printing has been demonstrated as a promising approach for on demand manufacturing of solid dosage forms. However, it usually requires the use of elevated temperatures and/or the incorporation of an evaporable solvent (usually water).

View Article and Find Full Text PDF

In this work, a novel enteric coating based on natural waxes and alginate was reported. Initially, theophylline tablets were coated with emulsified ceresin wax in heated aqueous alginate solution using a fluidised bed coating technology. A coating level of 10% proved sufficient to prevent tablets from uptaking gastric medium (<5%) and produced a delayed release profile that complies to the pharmacopeial criteria of enteric coating release.

View Article and Find Full Text PDF

On demand manufacturing of patient-specific oral doses provides significant advantages to patients and healthcare staff. Several 3D printing (3DP) technologies have been proposed as a potential digital alternative to conventional manufacturing of oral tablets. For an additive manufacturing approach to be successful for on-demand preparation, a facile process with minimal preparation steps and training requirements is needed.

View Article and Find Full Text PDF

Polypharmacy is often needed for the management of cardiovascular diseases and is associated with poor adherence to treatment. Hence, highly flexible and adaptable systems are in high demand to accommodate complex therapeutic regimens. A novel design approach is employed to fabricate highly modular 3D printed "polypill" capsules with bespoke release patterns for multiple drugs.

View Article and Find Full Text PDF

Purpose: The aim of this study was to develop novel paclitaxel-loaded proliposome tablet formulations for pulmonary drug delivery.

Method: Proliposome powder formulations (i.e.

View Article and Find Full Text PDF

Embedded three-dimensional printing (e-3DP) is an emerging method for additive manufacturing where semi-solid materials are extruded within a solidifying liquid matrix. Here, we present the first example of employing e-3DP in the pharmaceutical field and demonstrate the fabrication of bespoke chewable dosage forms with dual drug loading for potential use in pediatrics. Lego-like chewable bricks made of edible soft material (gelatin-based matrix) were produced by directly extruding novel printing patterns of model drug ink (embedded phase) into a liquid gelatin-based matrix (embedding phase) at an elevated temperature (70 °C) to then solidify at room temperature.

View Article and Find Full Text PDF

Despite the abundant use of polyethylene oxides (PEOs) and their integration as an excipient in numerous pharmaceutical products, there have been no previous reports of applying this important thermoplastic polymer species alone to fused deposition modelling (FDM) 3D printing. In this work, we have investigated the manufacture of oral doses via FDM 3D printing by employing PEOs as a backbone polymer in combination with polyethylene glycol (PEG). Blends of PEO (molecular weight 100 K, 200 K, 300 K, 600 K or 900 K) with PEG 6 K (plasticiser) and a model drug (theophylline) were hot-melt extruded.

View Article and Find Full Text PDF

Hypertension and dyslipidaemia are modifiable risk factors associated with cardiovascular diseases (CVDs) and often require a complex therapeutic regimen. The administration of several medicines is commonly associated with poor levels of adherence among patients, to which World Health Organisation (WHO) proposed a fixed-dose combination unit (polypill) as a strategy to improve adherence. In this work, we demonstrate the fabrication of patient-specific polypills for the treatment of CVDs by fused deposition modelling (FDM) 3D printing and introduce a novel solution to meet critical quality attributes.

View Article and Find Full Text PDF

There is an increased evidence for treating hypertension by a combination of two or more drugs. Increasing the number of daily intake of tablets has been reported to negatively affect the compliance of patients. Therefore, numerous fixed dose combinations (FDCs) have been introduced to the market.

View Article and Find Full Text PDF

Fused deposition modelling (FDM) 3D printing has shown the most immediate potential for on-demand dose personalisation to suit particular patient's needs. However, FDM 3D printing often involves employing a relatively large molecular weight thermoplastic polymer and results in extended release pattern. It is therefore essential to fast-track drug release from the 3D printed objects.

View Article and Find Full Text PDF

Purpose: Individualizing gastric-resistant tablets is associated with major challenges for clinical staff in hospitals and healthcare centres. This work aims to fabricate gastric-resistant 3D printed tablets using dual FDM 3D printing.

Methods: The gastric-resistant tablets were engineered by employing a range of shell-core designs using polyvinylpyrrolidone (PVP) and methacrylic acid co-polymer for core and shell structures respectively.

View Article and Find Full Text PDF

This work aims to employ fused deposition modelling 3D printing to fabricate immediate release pharmaceutical tablets with several model drugs. It investigates the addition of non-melting filler to methacrylic matrix to facilitate FDM 3D printing and explore the impact of (i) the nature of filler, (ii) compatibility with the gears of the 3D printer and iii) polymer: filler ratio on the 3D printing process. Amongst the investigated fillers in this work, directly compressible lactose, spray-dried lactose and microcrystalline cellulose showed a level of degradation at 135°C whilst talc and TCP allowed consistent flow of the filament and a successful 3D printing of the tablet.

View Article and Find Full Text PDF

Purpose: The fabrication of ready-to-use immediate release tablets via 3D printing provides a powerful tool to on-demand individualization of dosage form. This work aims to adapt a widely used pharmaceutical grade polymer, polyvinylpyrrolidone (PVP), for instant on-demand production of immediate release tablets via FDM 3D printing.

Methods: Dipyridamole or theophylline loaded filaments were produced via processing a physical mixture of API (10%) and PVP in the presence of plasticizer through hot-melt extrusion (HME).

View Article and Find Full Text PDF

The advances in personalised medicine increased the demand for a fast, accurate and reliable production method of tablets that can be digitally controlled by healthcare staff. A flexible dose tablet system is presented in this study that proved to be suitable for immediate and extended release tablets with a realistic drug loading and an easy-to-swallow tablet design. The method bridges the affordable and digitally controlled Fused Deposition Modelling (FDM) 3D printing with a standard pharmaceutical manufacturing process, Hot Melt Extrusion (HME).

View Article and Find Full Text PDF