Seabed gallery intake systems used for seawater reverse osmosis facilities employ the same principle of water treatment as slow sand filtration in freshwater systems. An investigation concerning the effectiveness of the active layer (top layer) in improving raw water quality was conducted by using a long-term bench-scale columns experiment. Two different media types, silica and carbonate sand, were tested in 1 m columns to evaluate the effectiveness of media type in terms of algae, bacteria, Natural Organic Matter (NOM) and Transparent Exopolymer Particles (TEP) removal over a period of 620 days.
View Article and Find Full Text PDFAn investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed.
View Article and Find Full Text PDFAn investigation of three seawater reverse osmosis facilities located along the shoreline of the Red Sea of Saudi Arabia that use well intake systems showed that the pumping-induced flow of raw seawater through a coastal aquifer significantly improves feed water quality. A comparison between the surface seawater and the discharge from the wells shows that turbidity, algae, bacteria, total organic carbon, most fractions of natural organic matter (NOM), and particulate and colloidal transparent exopolymer particles (TEP) have significant reductions in concentration. Nearly all of the algae, up to 99% of the bacteria, between 84 and 100% of the biopolymer fraction of NOM, and a high percentage of the TEP were removed during transport.
View Article and Find Full Text PDFOver 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g.
View Article and Find Full Text PDF