Publications by authors named "Abdullah Ekin"

Siloxane-polyurethane fouling-release (FR) coatings based on aminopropyl terminated poly(dimethylsiloxane) (PDMS) macromers were prepared and characterized for FR performance via laboratory biological assays. These systems rely on self-stratification, resulting in a coating with a siloxane-rich surface and polyurethane bulk. Previously, these coating systems have used PDMS with multiple functional groups which react into the polyurethane bulk.

View Article and Find Full Text PDF

Coatings libraries achieved through a combinatorial chemistry approach, which may generate tens to hundreds of formulations, can be deposited in an array of 12 patches, each approximately 9 cm(2), on 10 x 20 cm primed aluminum panels. However, existing methods to quantify algal biomass on coatings are unsuitable for this type of array format. This paper describes an algorithm modelled on a probability distribution that quantifies the area of surface covered by a green alga from digital images.

View Article and Find Full Text PDF

A high-throughput bacterial biofilm retention screening method has been augmented to facilitate the rapid analysis and down-selection of fouling-release coatings for identification of promising candidates. Coatings were cast in modified 24-well tissue culture plates and inoculated with the marine bacterium Cytophaga lytica for attachment and biofilm growth. Biofilms retained after rinsing with deionised water were dried at ambient laboratory conditions.

View Article and Find Full Text PDF

Libraries of siloxane-polyurethane coatings were designed, formulated, and screened using high-throughput experimentation. Four independent variables that were analyzed were the molecular weight of poly(dimethylsiloxane) (PDMS), presence or absence of poly(epsilon-caprolactone) (PCL) blocks attached to the PDMS backbone, the length of the PCL blocks, and the siloxane polymer level in the coating formulations. In addition to the siloxane libraries (3-aminopropyl-terminated PDMS and poly(epsilon-caprolactone)-poly(dimethylsiloxane)-poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers), the coating formulation included a trifunctional isocyanate crosslinker, trifunctional poly(epsilon-caprolactone) polyol, 2,4-pentanedione (pot-life extender), dibutyltin diacetate (catalyst), and a blend of solvents.

View Article and Find Full Text PDF